2,332 research outputs found

    Observations on Factors Affecting Performance of MapReduce based Apriori on Hadoop Cluster

    Full text link
    Designing fast and scalable algorithm for mining frequent itemsets is always being a most eminent and promising problem of data mining. Apriori is one of the most broadly used and popular algorithm of frequent itemset mining. Designing efficient algorithms on MapReduce framework to process and analyze big datasets is contemporary research nowadays. In this paper, we have focused on the performance of MapReduce based Apriori on homogeneous as well as on heterogeneous Hadoop cluster. We have investigated a number of factors that significantly affects the execution time of MapReduce based Apriori running on homogeneous and heterogeneous Hadoop Cluster. Factors are specific to both algorithmic and non-algorithmic improvements. Considered factors specific to algorithmic improvements are filtered transactions and data structures. Experimental results show that how an appropriate data structure and filtered transactions technique drastically reduce the execution time. The non-algorithmic factors include speculative execution, nodes with poor performance, data locality & distribution of data blocks, and parallelism control with input split size. We have applied strategies against these factors and fine tuned the relevant parameters in our particular application. Experimental results show that if cluster specific parameters are taken care of then there is a significant reduction in execution time. Also we have discussed the issues regarding MapReduce implementation of Apriori which may significantly influence the performance.Comment: 8 pages, 8 figures, International Conference on Computing, Communication and Automation (ICCCA2016

    Privacy-Preserving Secret Shared Computations using MapReduce

    Full text link
    Data outsourcing allows data owners to keep their data at \emph{untrusted} clouds that do not ensure the privacy of data and/or computations. One useful framework for fault-tolerant data processing in a distributed fashion is MapReduce, which was developed for \emph{trusted} private clouds. This paper presents algorithms for data outsourcing based on Shamir's secret-sharing scheme and for executing privacy-preserving SQL queries such as count, selection including range selection, projection, and join while using MapReduce as an underlying programming model. Our proposed algorithms prevent an adversary from knowing the database or the query while also preventing output-size and access-pattern attacks. Interestingly, our algorithms do not involve the database owner, which only creates and distributes secret-shares once, in answering any query, and hence, the database owner also cannot learn the query. Logically and experimentally, we evaluate the efficiency of the algorithms on the following parameters: (\textit{i}) the number of communication rounds (between a user and a server), (\textit{ii}) the total amount of bit flow (between a user and a server), and (\textit{iii}) the computational load at the user and the server.\BComment: IEEE Transactions on Dependable and Secure Computing, Accepted 01 Aug. 201

    Comparing MapReduce and pipeline implementations for counting triangles

    Get PDF
    A common method to define a parallel solution for a computational problem consists in finding a way to use the Divide and Conquer paradigm in order to have processors acting on its own data and scheduled in a parallel fashion. MapReduce is a programming model that follows this paradigm, and allows for the definition of efficient solutions by both decomposing a problem into steps on subsets of the input data and combining the results of each step to produce final results. Albeit used for the implementation of a wide variety of computational problems, MapReduce performance can be negatively affected whenever the replication factor grows or the size of the input is larger than the resources available at each processor. In this paper we show an alternative approach to implement the Divide and Conquer paradigm, named dynamic pipeline. The main features of dynamic pipelines are illustrated on a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To evaluate the properties of pipeline, a dynamic pipeline of processes and an ad-hoc version of MapReduce are implemented in the language Go, exploiting its ability to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different topologies, sizes, and densities. Observed results suggest that dynamic pipelines allows for an efficient implementation of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer ReviewedPostprint (published version
    • …
    corecore