126 research outputs found

    Strong and Provably Secure Database Access Control

    Full text link
    Existing SQL access control mechanisms are extremely limited. Attackers can leak information and escalate their privileges using advanced database features such as views, triggers, and integrity constraints. This is not merely a problem of vendors lagging behind the state-of-the-art. The theoretical foundations for database security lack adequate security definitions and a realistic attacker model, both of which are needed to evaluate the security of modern databases. We address these issues and present a provably secure access control mechanism that prevents attacks that defeat popular SQL database systems.Comment: A short version of this paper has been published in the proceedings of the 1st IEEE European Symposium on Security and Privacy (EuroS&P 2016

    ATOM: an object-based formal method for real-time systems

    Get PDF
    An object based formal method for the development of real-time systems, called ATOM, is presented. The method is an integration of the real-time formal technique TAM (Temporal Agent Model) with an industry-strength structured methodology known as HRT-HOOD. ATOM is a systematic formal approach based on the refinement calculus. Within ATOM, a formal specification (or abstract description statement) contains Interval Temporal Logic (ITL) description of the timing, functional, and communication behavior of the proposed real-time system. This formal specification can be analyzed and then refined into concrete statements through successive applications of sound refinement laws. Both abstract and concrete statements are allowed to freely intermix. The semantics of the concrete statements in ATOM are defined denotationally in specification-oriented style using ITL.Funding received from the UK Engineering and Physical Sciences Research Council (EPSRC) through the Research Grant GR/M/0258

    A formal framework for model management

    Full text link
    El Desarrollo de Software Dirigido por Modelos es una rama de la Ingeniería del Software en la que los artefactos software se representan como modelos para incrementar la productividad, calidady eficiencia económica en el proceso de desarrollo de software, donde un modelo proporciona una representación abstracta del código final de una aplicación. En este campo, la iniciativa Model-Driven Architecture (MDA), patrocinada por la OMG, está constituida por una familia de estándares industriales, entre los que se destacan: Meta-Object Facility (MOF), Unified Modeling Language (UML), Object Constraint Language (OCL), XML Metadata Interchange (XMI), y Query/Views/Transformations (QVT). Estos estándares proporcionan unas directrices comunes para herramientas basadas en modelos y para procesos de desarrollo de software dirigidos por modelos. Su objetivo consiste en mejorar la interoperabilidad entre marcos de trabajo ejecutables, en automatizar el proceso desarrollo de software de software y en proporcionar técnicas que eviten errores durante ese proceso. El estándar MOF describe un marco de trabajo genérico que permite definir la sintaxis abstracta de lenguajes de modelado. Este estándar persigue la definición de los conceptos básicos que son utilizados en procesos de desarrollo de software dirigidos por modelos: que es un modelo, que es un metamodelo, qué es reflexión en un marco de trabajo basado en MOF, etc. Sin embargo, la mayoría de estos conceptos carecen de una semántica formal en la versión actual del estándar MOF. Además, OCL se utiliza como un lenguage de definición de restricciones que permite añadir semántica a un metamodelo MOF. Desafortunadamente, la relación entre un metamodelo y sus restricciones OCL también carece de una semántica formal. Este hecho es debido, en parte, a que los metamodelos solo pueden ser definidos como dato en un marco de trabajo basado en MOF. El estándar MOF también proporciona las llamadas facilidades de reflexión de MOF (MOF ReflectiBoronat Moll, A. (2007). A formal framework for model management [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1964Palanci

    On the Quality Properties of Model Transformations: Performance and Correctness

    Get PDF
    The increasing complexity of software due to continuous technological advances has motivated the use of models in the software development process. Initially, models were mainly used as drafts to help developers understand their programs. Later they were used extensively and a new discipline called Model-Driven Engineering (MDE) was born. In the MDE paradigm, aside from the models themselves, model transformations (MT) are garnering interest as they allow the analysis and manipulation of models. Therefore, the performance, scalability and correctness of model transformations have become critical issues and thus they deserve a thorough study. Existing model transformation engines are principally based on sequential and in-memory execution strategies, and hence their capabilities to transform very large models in parallel and in distributed environments are limited. Current tools and languages are not able to cope with models that are not located in a single machine and, even worse, most of them require the model to be in a single file. Moreover, once a model transformation has been written and executed-either sequentially or in parallel-it is necessary to rely on methods, mechanisms, and tools for checking its correctness. In this dissertation, our contribution is twofold. Firstly, we introduce a novel execution platform that permits the parallel execution of both out-place and in-place model transformations, regardless of whether the models fit into a single machine memory or not. This platform can be used as a target for high-level transformation language compilers, so that existing model transformations do not need to be rewritten in another language but only have to be executed more efficiently. Another advantage is that a developer who is familiar with an existing model transformation language does not need to learn a new one. In addition to performance, the correctness of model transformations is an essential aspect that needs to be addressed if MTs are going to be used in realistic industrial settings. Due to the fact that the most popular model transformation languages are rule-based, i.e., the transformations written in those languages comprise rules that define how the model elements are transformed, the second contribution of this thesis is a static approach for locating faulty rules in model transformations. Current approaches able to fully prove correctness-such as model checking techniques-require an unacceptable amount of time and memory. Our approach cannot fully prove correctness but can be very useful for identifying bugs at an early development stage, quickly and cost effectively

    Automated Validation of State-Based Client-Centric Isolation with TLA <sup>+</sup>

    Get PDF
    Clear consistency guarantees on data are paramount for the design and implementation of distributed systems. When implementing distributed applications, developers require approaches to verify the data consistency guarantees of an implementation choice. Crooks et al. define a state-based and client-centric model of database isolation. This paper formalizes this state-based model in, reproduces their examples and shows how to model check runtime traces and algorithms with this formalization. The formalized model in enables semi-automatic model checking for different implementation alternatives for transactional operations and allows checking of conformance to isolation levels. We reproduce examples of the original paper and confirm the isolation guarantees of the combination of the well-known 2-phase locking and 2-phase commit algorithms. Using model checking this formalization can also help finding bugs in incorrect specifications. This improves feasibility of automated checking of isolation guarantees in synthesized synchronization implementations and it provides an environment for experimenting with new designs.</p

    Design and evaluation of information flow signature for secure computation of applications

    Get PDF
    This thesis presents an architectural solution that provides secure and reliable execution of an application that computes critical data, in spite of potential hardware and software vulnerabilities. The technique does not require source code of or specifications about the malicious library function(s) called during execution of an application. The solution is based on the concept of Information Flow Signatures (IFS). The technique uses both a model-checker-based symbolic fault injection analysis tool called SymPLFIED to generate an IFS for an application or operating system, and runtime signature checking at the level of hardware to protect the integrity of critical data. The runtime checking is implemented in the IFS module. Reliable computation of data is ensured by the critical value re-computation (CVR) module. Prototype implementation of the signature checking and reliability module on a soft processor within an FPGA incurs no performance overhead and about 12% chip area overhead. The security module itself incurs about 7.5% chip area overhead. Performance evaluations indicate that the IFS module incurs as little as 3-4% overhead compared to 88-100% overhead when the runtime checking is implemented as a part of software. Preliminary testing indicates that the technique can provide 100% coverage for insider attacks that manifest as memory corruption and change the architectural state of the processor. Hence the IFS and CVR implementation offers a flexible, low-overhead, high-coverage method for ensuring reliable and secure computing

    Mathematics in Software Reliability and Quality Assurance

    Get PDF
    This monograph concerns the mathematical aspects of software reliability and quality assurance and consists of 11 technical papers in this emerging area. Included are the latest research results related to formal methods and design, automatic software testing, software verification and validation, coalgebra theory, automata theory, hybrid system and software reliability modeling and assessment
    corecore