856 research outputs found

    A Codesign Case Study in Computer Graphics

    Get PDF
    This paper describes a codesign case study where a computer graphics application is examined with the intention to speed up its execution. The application is specified as a C program, and is characterized by the lack of a simple compute-intensive kernel. The hardware/software partitioning is based on information obtained from software profiling and the resulting design is validated through cosimulation. A locally developed interface model, Merlin, is used as the basis for co-simulation. The achieved speed-up is estimated based on an analysis of profile information. 1 Introduction Codesign, i.e., the combined development of hardware and software, can be roughly classified as follows: ffl Co-development of both hardware and software from a specification which does not favor either implementation strategy. ffl Hardware design of instruction set processors. Aside from hardware design, it also involves software analysis to optimize the instruction set. ffl Speed-up of an existing softwa..

    On mixed abstraction, languages and simulation approach to refinement with SystemC AMS

    Get PDF
    Executable specifications and simulations arecornerstone to system design flows. Complex mixed signalembedded systems can be specified with SystemC AMSwhich supports abstraction and extensible models of computation. The language contains semantics for moduleconnections and synchronization required in analog anddigital interaction. Through the synchronization layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving low level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS. The methodology uses Cbased interaction between simulators. An RTL model ofdata encryption standard is demonstrated as an example.The methodology is flexible and can be applied in earlydesign decision trade off, architecture experimentation and particularly for model refinement and critical behavior analysis

    Embedded Systems Requirements Verification Using HiLeS Designer

    Get PDF
    International audienceOne of the issues related to systems design is the early verification in first design steps: system specifications verification. Nowadays, it is common to use text-based specifications to begin a system design. However, these specifications cannot be verified until a software model is made. In this work, we show how can we use HiLeS Designer to model and verify, formally and by simulation an embedded system specification. This tool makes easier to build the model, using graphical concepts which are familiar to designers. It also helps to verify formally the structure and some logical behavior, and by simulation, it is possible to verify the consistence of the embedded system specification. We model and verify System Display Selector Requirements applying HiLeS Designer

    An Enhanced Hardware Description Language Implementation for Improved Design-Space Exploration in High-Energy Physics Hardware Design

    Get PDF
    Detectors in High-Energy Physics (HEP) have increased tremendously in accuracy, speed and integration. Consequently HEP experiments are confronted with an immense amount of data to be read out, processed and stored. Originally low-level processing has been accomplished in hardware, while more elaborate algorithms have been executed on large computing farms. Field-Programmable Gate Arrays (FPGAs) meet HEP's need for ever higher real-time processing performance by providing programmable yet fast digital logic resources. With the fast move from HEP Digital Signal Processing (DSPing) applications into the domain of FPGAs, related design tools are crucial to realise the potential performance gains. This work reviews Hardware Description Languages (HDLs) in respect to the special needs present in the HEP digital hardware design process. It is especially concerned with the question, how features outside the scope of mainstream digital hardware design can be implemented efficiently into HDLs. It will argue that functional languages are especially suitable for implementation of domain-specific languages, including HDLs. Casestudies examining the implementation complexity of HEP-specific language extensions to the functional HDCaml HDL will prove the viability of the suggested approach

    Hardware/Software Co-design of Communication Protocols

    Full text link
    An important aspect in providing high performance distributed systems such as multimedia systems is the combined use of hardware and software in the end systems. System design techniques should allow hardware/software co-design to integrate both means of implementation. In this paper, we show how the standardized formal language Estelle can be used to facilitate co-design. The system will first be designed in Estelle. At the point in time of final decision on which parts to implement in software and which in hardware, the original specification will be split into several partial specifications. The software parts are translated into C code, while the hardware parts are translated into VHDL code for further analysis and development. We present a tool environment which supports the protocol developer in the design and implementation process. A simple Video-on-Demand example shows the usefulness of the tool environment

    Java Dust: How Small Can Embedded Java Be?

    Get PDF
    Java is slowly being accepted as a language and platform for embedded devices. However, the memory requirements of the Java library and runtime are still troublesome. A Java system is considered small when it requires less than 1 MB, and within the embedded domain small microcontollers with a few KB on-chip Flash memory and even less on-chip RAM are very common. For such small devices Java is a clearly challenging. In this paper we present the combination of the Java compiler Muvium for microcontrollers with the tiny soft-core Leros for an FPGA. To the best of our knowledge, the presented embedded Java system is the smallest Java system available. The Leros processor consumes less than 5 % of the logic cells of the smallest FPGA from Altera and the Muvium compiler produces a JVM, including the Java application, that can execute in a few KB ROM and less than 1 KB RAM. The Leros processor is available in open-source and the Leros port of Muvium is freely available
    • …
    corecore