1,377 research outputs found

    Creating telecommunication services based on object-oriented frameworks and SDL

    Get PDF
    This paper describes the tools and techniques being applied in the TINA Open Service Creation Architecture (TOSCA) project to develop object-oriented models of distributed telecommunication services in SDL. The paper also describes the way in which Tree and Tabular Combined Notation (TTCN) test cases are derived from these models and subsequently executed against the CORBA-based implementations of these services through a TTCN/CORBA gateway

    Don't Repeat Yourself: Seamless Execution and Analysis of Extensive Network Experiments

    Full text link
    This paper presents MACI, the first bespoke framework for the management, the scalable execution, and the interactive analysis of a large number of network experiments. Driven by the desire to avoid repetitive implementation of just a few scripts for the execution and analysis of experiments, MACI emerged as a generic framework for network experiments that significantly increases efficiency and ensures reproducibility. To this end, MACI incorporates and integrates established simulators and analysis tools to foster rapid but systematic network experiments. We found MACI indispensable in all phases of the research and development process of various communication systems, such as i) an extensive DASH video streaming study, ii) the systematic development and improvement of Multipath TCP schedulers, and iii) research on a distributed topology graph pattern matching algorithm. With this work, we make MACI publicly available to the research community to advance efficient and reproducible network experiments

    Electronic System-Level Synthesis Methodologies

    Full text link

    From Conceptual Modelling to Requirements Engineering

    No full text
    International audienceConceptual modelling is situated in the broader view of information systems requirements engineering. Requirements Engineering (RE) explores the objectives of different stakeholders and the activities carried out by them to meet these objectives in order to derive purposeful system requirements and therefore lead to better quality systems i.e. systems that meet the requirements of their users. Thus RE product models use concepts for modelling these instead of concepts like data, process, events etc. used in conceptual models. Since the former are more stable than the latter, requirements engineering manages change better. The paper gives the rationale for extending traditional conceptual models and introduces some RE product models. Furthermore, in contrast to conceptual modelling, requirements engineering lays great stress on the engineering process employed. The paper introduces some RE process models and considers their effect on tool support

    Design-time performance analysis of component-based real-time systems

    Get PDF
    In current real-time systems, performance metrics are one of the most challenging properties to specify, predict and measure. Performance properties depend on various factors, like environmental context, load profile, middleware, operating system, hardware platform and sharing of internal resources. Performance failures and not satisfying related requirements cause delays, cost overruns, and even abandonment of projects. In order to avoid these performancerelated project failures, the performance properties should be obtained and analyzed already at the early design phase of a project. In this thesis we employ principles of component-based software engineering (CBSE), which enable building software systems from individual components. The advantage of CBSE is that individual components can be modeled, reused and traded. The main objective of this thesis is to develop a method that enables to predict the performance properties of a system, based on the performance properties of the involved individual components. The prediction method serves rapid prototyping and performance analysis of the architecture or related alternatives, without performing the usual testing and implementation stages. The involved research questions are as follows. How should the behaviour and performance properties of individual components be specified in order to enable automated composition of these properties into an analyzable model of a complete system? How to synthesize the models of individual components into a model of a complete system in an automated way, such that the resulting system model can be analyzed against the performance properties? The thesis presents a new framework called DeepCompass, which realizes the concept of predictable assembly throughout all phases of the system design. The cornerstones of the framework are the composable models of individual software components and hardware blocks. The models are specified at the component development time and shipped in a component package. At the component composition phase, the models of the constituent components are synthesized into an executable system model. Since the thesis focuses on performance properties, we introduce performance-related types of component models, such as behaviour, performance and resource models. The dynamics of the system execution are captured in scenario models. The essential advantage of the introduced models is that, through the behaviour of individual components and scenario models, the behaviour of the complete system is synthesized in the executable system model. Further simulation-based analysis of the obtained executable system model provides application-specific and system-specific performance property values. To support the performance analysis, we have developed a CARAT software toolkit that provides and automates the algorithms for model synthesis and simulation. Besides this, the toolkit provides graphical tools for designing alternative architectures and visualization of obtained performance properties. We have conducted an empirical case study on the use of scenarios in the industry to analyze the system performance at the early design phase. It was found that industrial architects make extensive use of scenarios for performance evaluation. Based on the inputs of the architects, we have provided a set of guidelines for identification and use of performance-critical scenarios. At the end of this thesis, we have validated the DeepCompass framework by performing three case studies on performance prediction of real-time systems: an MPEG-4 video decoder, a Car Radio Navigation system and a JPEG application. For each case study, we have constructed models of the individual components, defined the SW/HW architecture, and used the CARAT toolkit to synthesize and simulate the executable system model. The simulation provided the predicted performance properties, which we later compared with the actual performance properties of the realized systems. With respect to resource usage properties and average task latencies, the variation of the prediction error showed to be within 30% of the actual performance. Concerning the pick loads on the processor nodes, the actual values were sometimes three times larger than the predicted values. As a conclusion, the framework has proven to be effective in rapid architecture prototyping and performance analysis of a complete system. This is valid, as in the case studies we have spent not more than 4-5 days on the average for the complete iteration cycle, including the design of several architecture alternatives. The framework can handle different architectural styles, which makes it widely applicable. A conceptual limitation of the framework is that it assumes that the models of individual components are already available at the design phase

    Application specific instruction set processor design for embedded application using the coware tool

    Get PDF
    An Application Specific Instruction Set Processor (ASIP) is widely used as a System on a Chip(SoC) Component. ASIPs possess an instruction set which is tai-lored to benefit a specific application. Such specialization allows ASIPs to serve as an intermediate between two dominant processor design styles- ASICs which has high processing abilities at the cost of limited programmability and Programmable solu-tions such as FPGAs that provide programming exibility at the cost of less energy eficiency. In this dissertation the goal is to design ASIP, keeping in mind a temper-ature sensor system. The platform used for processor design is LISA 2.0 description language and processor designing environment from CoWare. Coware processor de-signer allows processor architecture to be defined at an abstract level and automatic generation of chain of software tools like assembler, linker and simulator for functional verification followed by RTL level description. RTL level description is used to gen-erate synthesized report of the design using RTL compiler and finally the layout is created using Cadence encounter
    corecore