34 research outputs found

    Diffusion models and steady-state approximations for exponentially ergodic Markovian queues

    Full text link
    Motivated by queues with many servers, we study Brownian steady-state approximations for continuous time Markov chains (CTMCs). Our approximations are based on diffusion models (rather than a diffusion limit) whose steady-state, we prove, approximates that of the Markov chain with notable precision. Strong approximations provide such "limitless" approximations for process dynamics. Our focus here is on steady-state distributions, and the diffusion model that we propose is tractable relative to strong approximations. Within an asymptotic framework, in which a scale parameter nn is taken large, a uniform (in the scale parameter) Lyapunov condition imposed on the sequence of diffusion models guarantees that the gap between the steady-state moments of the diffusion and those of the properly centered and scaled CTMCs shrinks at a rate of n\sqrt{n}. Our proofs build on gradient estimates for solutions of the Poisson equations associated with the (sequence of) diffusion models and on elementary martingale arguments. As a by-product of our analysis, we explore connections between Lyapunov functions for the fluid model, the diffusion model and the CTMC.Comment: Published in at http://dx.doi.org/10.1214/13-AAP984 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Simple and explicit bounds for multi-server queues with 1/(1βˆ’Ο)1/(1 - \rho) (and sometimes better) scaling

    Full text link
    We consider the FCFS GI/GI/nGI/GI/n queue, and prove the first simple and explicit bounds that scale as 11βˆ’Ο\frac{1}{1-\rho} (and sometimes better). Here ρ\rho denotes the corresponding traffic intensity. Conceptually, our results can be viewed as a multi-server analogue of Kingman's bound. Our main results are bounds for the tail of the steady-state queue length and the steady-state probability of delay. The strength of our bounds (e.g. in the form of tail decay rate) is a function of how many moments of the inter-arrival and service distributions are assumed finite. More formally, suppose that the inter-arrival and service times (distributed as random variables AA and SS respectively) have finite rrth moment for some r>2.r > 2. Let ΞΌA\mu_A (respectively ΞΌS\mu_S) denote 1E[A]\frac{1}{\mathbb{E}[A]} (respectively 1E[S]\frac{1}{\mathbb{E}[S]}). Then our bounds (also for higher moments) are simple and explicit functions of E[(AΞΌA)r],E[(SΞΌS)r],r\mathbb{E}\big[(A \mu_A)^r\big], \mathbb{E}\big[(S \mu_S)^r\big], r, and 11βˆ’Ο\frac{1}{1-\rho} only. Our bounds scale gracefully even when the number of servers grows large and the traffic intensity converges to unity simultaneously, as in the Halfin-Whitt scaling regime. Some of our bounds scale better than 11βˆ’Ο\frac{1}{1-\rho} in certain asymptotic regimes. More precisely, they scale as 11βˆ’Ο\frac{1}{1-\rho} multiplied by an inverse polynomial in n(1βˆ’Ο)2.n(1 - \rho)^2. These results formalize the intuition that bounds should be tighter in light traffic as well as certain heavy-traffic regimes (e.g. with ρ\rho fixed and nn large). In these same asymptotic regimes we also prove bounds for the tail of the steady-state number in service. Our main proofs proceed by explicitly analyzing the bounding process which arises in the stochastic comparison bounds of amarnik and Goldberg for multi-server queues. Along the way we derive several novel results for suprema of random walks and pooled renewal processes which may be of independent interest. We also prove several additional bounds using drift arguments (which have much smaller pre-factors), and make several conjectures which would imply further related bounds and generalizations

    Stein's method for steady-state diffusion approximations

    Full text link
    Diffusion approximations have been a popular tool for performance analysis in queueing theory, with the main reason being tractability and computational efficiency. This dissertation is concerned with establishing theoretical guarantees on the performance of steady-state diffusion approximations of queueing systems. We develop a modular framework based on Stein's method that allows us to establish error bounds, or convergence rates, for the approximations. We apply this framework three queueing systems: the Erlang-C, Erlang-A, and M/Ph/n+MM/Ph/n+M systems. The former two systems are simpler and allow us to showcase the full potential of the framework. Namely, we prove that both Wasserstein and Kolmogorov distances between the stationary distribution of a normalized customer count process, and that of an appropriately defined diffusion process decrease at a rate of 1/R1/\sqrt{R}, where RR is the offered load. Futhermore, these error bounds are \emph{universal}, valid in any load condition from lightly loaded to heavily loaded. For the Erlang-C model, we also show that a diffusion approximation with state-dependent diffusion coefficient can achieve a rate of convergence of 1/R1/R, which is an order of magnitude faster when compared to approximations with constant diffusion coefficients.Comment: PhD Thesi
    corecore