6 research outputs found

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin

    AN EFFICIENT INTERFERENCE AVOIDANCE SCHEME FOR DEVICE-TODEVICE ENABLED FIFTH GENERATION NARROWBAND INTERNET OF THINGS NETWOKS’

    Get PDF
    Narrowband Internet of Things (NB-IoT) is a low-power wide-area (LPWA) technology built on long-term evolution (LTE) functionalities and standardized by the 3rd-Generation Partnership Project (3GPP). Due to its support for massive machine-type communication (mMTC) and different IoT use cases with rigorous standards in terms of connection, energy efficiency, reachability, reliability, and latency, NB-IoT has attracted the research community. However, as the capacity needs for various IoT use cases expand, the LTE evolved packet core (EPC) system's numerous functionalities may become overburdened and suboptimal. Several research efforts are currently in progress to address these challenges. As a result, an overview of these efforts with a specific focus on the optimized architecture of the LTE EPC functionalities, the 5G architectural design for NB-IoT integration, the enabling technologies necessary for 5G NB-IoT, 5G new radio (NR) coexistence with NB-IoT, and feasible architectural deployment schemes of NB-IoT with cellular networks is discussed. This thesis also presents cloud-assisted relay with backscatter communication as part of a detailed study of the technical performance attributes and channel communication characteristics from the physical (PHY) and medium access control (MAC) layers of the NB-IoT, with a focus on 5G. The numerous drawbacks that come with simulating these systems are explored. The enabling market for NB-IoT, the benefits for a few use cases, and the potential critical challenges associated with their deployment are all highlighted. Fortunately, the cyclic prefix orthogonal frequency division multiplexing (CPOFDM) based waveform by 3GPP NR for improved mobile broadband (eMBB) services does not prohibit the use of other waveforms in other services, such as the NB-IoT service for mMTC. As a result, the coexistence of 5G NR and NB-IoT must be manageably orthogonal (or quasi-orthogonal) to minimize mutual interference that limits the form of freedom in the waveform's overall design. As a result, 5G coexistence with NB-IoT will introduce a new interference challenge, distinct from that of the legacy network, even though the NR's coexistence with NB-IoT is believed to improve network capacity and expand the coverage of the user data rate, as well as improves robust communication through frequency reuse. Interference challenges may make channel estimation difficult for NB-IoT devices, limiting the user performance and spectral efficiency. Various existing interference mitigation solutions either add to the network's overhead, computational complexity and delay or are hampered by low data rate and coverage. These algorithms are unsuitable for an NB-IoT network owing to the low-complexity nature. As a result, a D2D communication based interference-control technique becomes an effective strategy for addressing this problem. This thesis used D2D communication to decrease the network bottleneck in dense 5G NBIoT networks prone to interference. For D2D-enabled 5G NB-IoT systems, the thesis presents an interference-avoidance resource allocation that considers the less favourable cell edge NUEs. To simplify the algorithm's computing complexity and reduce interference power, the system divides the optimization problem into three sub-problems. First, in an orthogonal deployment technique using channel state information (CSI), the channel gain factor is leveraged by selecting a probable reuse channel with higher QoS control. Second, a bisection search approach is used to find the best power control that maximizes the network sum rate, and third, the Hungarian algorithm is used to build a maximum bipartite matching strategy to choose the optimal pairing pattern between the sets of NUEs and the D2D pairs. The proposed approach improves the D2D sum rate and overall network SINR of the 5G NB-IoT system, according to the numerical data. The maximum power constraint of the D2D pair, D2D's location, Pico-base station (PBS) cell radius, number of potential reuse channels, and cluster distance impact the D2D pair's performance. The simulation results achieve 28.35%, 31.33%, and 39% SINR performance higher than the ARSAD, DCORA, and RRA algorithms when the number of NUEs is twice the number of D2D pairs, and 2.52%, 14.80%, and 39.89% SINR performance higher than the ARSAD, RRA, and DCORA when the number of NUEs and D2D pairs are equal. As a result, a D2D sum rate increase of 9.23%, 11.26%, and 13.92% higher than the ARSAD, DCORA, and RRA when the NUE’s number is twice the number of D2D pairs, and a D2D’s sum rate increase of 1.18%, 4.64% and 15.93% higher than the ARSAD, RRA and DCORA respectively, with an equal number of NUEs and D2D pairs is achieved. The results demonstrate the efficacy of the proposed scheme. The thesis also addressed the problem where the cell-edge NUE's QoS is critical to challenges such as long-distance transmission, delays, low bandwidth utilization, and high system overhead that affect 5G NB-IoT network performance. In this case, most cell-edge NUEs boost their transmit power to maximize network throughput. Integrating cooperating D2D relaying technique into 5G NB-IoT heterogeneous network (HetNet) uplink spectrum sharing increases the system's spectral efficiency and interference power, further degrading the network. Using a max-max SINR (Max-SINR) approach, this thesis proposed an interference-aware D2D relaying strategy for 5G NB-IoT QoS improvement for a cell-edge NUE to achieve optimum system performance. The Lagrangian-dual technique is used to optimize the transmit power of the cell-edge NUE to the relay based on the average interference power constraint, while the relay to the NB-IoT base station (NBS) employs a fixed transmit power. To choose an optimal D2D relay node, the channel-to-interference plus noise ratio (CINR) of all available D2D relays is used to maximize the minimum cell-edge NUE's data rate while ensuring the cellular NUEs' QoS requirements are satisfied. Best harmonic mean, best-worst, half-duplex relay selection, and a D2D communication scheme were among the other relaying selection strategies studied. The simulation results reveal that the Max-SINR selection scheme outperforms all other selection schemes due to the high channel gain between the two communication devices except for the D2D communication scheme. The proposed algorithm achieves 21.27% SINR performance, which is nearly identical to the half-duplex scheme, but outperforms the best-worst and harmonic selection techniques by 81.27% and 40.29%, respectively. As a result, as the number of D2D relays increases, the capacity increases by 14.10% and 47.19%, respectively, over harmonic and half-duplex techniques. Finally, the thesis presents future research works on interference control in addition with the open research directions on PHY and MAC properties and a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis presented in Chapter 2 to encourage further study on 5G NB-IoT

    Performance Evaluation of Ultra-Dense Networks with Applications in Internet-of-Things

    Get PDF
    The new wireless era in the next decade and beyond would be very different from our experience nowadays. The fast pace of introducing new technologies, services, and applications requires the researchers and practitioners in the field be ready by making paradigm shifts. The stringent requirements on 5G networks, in terms of throughput, latency, and connectivity, challenge traditional incremental improvement in the network performance. This urges the development of unconventional solutions such as network densification, massive multiple-input multiple-output (massive MIMO), cloud-based radio access network (C-RAN), millimeter Waves (mmWaves), non-orthogonal multiple access (NOMA), full-duplex communication, wireless network virtualization, and proactive content-caching to name a few. Ultra-Dense Network (UDN) is one of the preeminent technologies in the racetrack towards fulfilling the requirements of next generation mobile networks. Dense networks are featured by the deployment of abundant of small cells in hotspots where immense traffic is generated. In this context, the density of small cells surpasses the active users’ density providing a new wireless environment that has never been experienced in mobile communication networks. The high density of small cells brings the serving cells much closer to the end users providing a two-fold gain where better link quality is achieved and more spatial reuse is accomplished. In this thesis, we identified the distinguishing features of dense networks which include: close proximity of many cells to a given user, potential inactivity of most base stations (BSs) due to lack of users, drastic inter-cell interference in hot-spots, capacity limitation by virtue of the backhaul bottleneck, and fundamentally different propagation environments. With these features in mind, we recognized several problems associated with the performance evaluation of UDN which require a treatment different from traditional cellular networks. Using rigorous advanced mathematical techniques along with extensive Monte Carlo simulations, we modelled and analytically studied the problems in question. Consequently, we developed several mathematical frameworks providing closed-form and easy-computable mathematical instruments which network designers and operators can use to tune the networks in order to achieve the optimal performance. Moreover, the investigations performed in this thesis furnish a solid ground for addressing more problems to better understand and exploit the UDN technology for higher performance grades. In Chapter 3, we propose the multiple association in dense network environment where the BSs are equipped with idle mode capabilities. This provides the user with a “data-shower,” where the user’s traffic is split into multiple paths, which helps overcoming the capacity limitations imposed by the backhaul links. We evaluate the performance of the proposed association scheme considering general fading channel distributions. To this end, we develop a tractable framework for the computation of the average downlink rate. In Chapter 4, we study the downlink performance of UDNs considering Stretched Exponential Path-Loss (SEPL) to capture the short distances of the communication links. Considering the idle mode probability of small cells, we draw conclusions which better reflect the performance of network densification considering SEPL model. Our findings reveal that the idle mode capabilities of the BSs provide a very useful interference mitigation technique. Another interesting insight is that the system interference in idle mode capable UDNs is upper-bounded by the interference generated from the active BSs, and in turn, this is upper-bounded by the number of active users where more active users is translated to more interference in the system. This means that the interference becomes independent of the density of the small cells as this density increases. In Chapter 5, we provide the derivation of the average secrecy rate in UDNs considering their distinct traits, namely, idle mode BSs and LOS transmission. To this end, we exploit the standard moment generating function (MGF)-based approach to derive relatively simple and easily computable expressions for the average secrecy rate considering the idle mode probability and Rician fading channel. The result of this investigation avoids the system level simulations where the performance evaluation complexity can be greatly reduced with the aid of the derived analytical expressions. In Chapter 6, we model the uplink coverage of mMTC deployment scenario considering a UDN environment. The presented analysis reveals the significant and unexpected impact of the high density of small cells in UDNs on the maximum transmit power of the MTC nodes. This finding relaxes the requirements on the maximum transmit power which in turn allows for less complexity, brings more cost savings, and yields much longer battery life. This investigation provides accurate, simple, and insightful expressions which shows the impact of every single system parameter on the network performance allowing for guided tunability of the network. Moreover, the results signify the asymptotic limits of the impact of all system parameters on the network performance. This allows for the efficient operation of the network by designing the system parameters which maximizes the network performance. In Chapter 7, we address the impact of the coexistence of MTC and HTC communications on the network performance in UDNs. In this investigation, we study the downlink network performance in terms of the coverage probability and the cell load where we propose two association schemes for the MTC devices, namely, Connect-to-Closest (C2C) and Connect-to-Active (C2A). The network performance is then analyzed and compared in both association schemes. In Chapter 8, we model the uplink coverage of HTC users and MTC devices paired together in NOMA-based radio access. Closed-form and easy-computable analytical results are derived for the considered performance metrics, namely the uplink coverage and the uplink network throughput. The analytical results, which are validated by extensive Monte Carlo simulations, reveal that increasing the density of small cells and the available bandwidth significantly improves the network performance. On the other side, the power control parameters has to be tuned carefully to approach the optimal performance of both the uplink coverage and the uplink network throughput

    Interference management and system optimisation for Femtocells technology in LTE and future 4G/5G networks

    Get PDF
    Femtocells are seen to be the future of Long Term Evaluation (LTE) networks to improve the performance of indoor, outdoor and cell edge User Equipments (UEs). These small cells work efficiently in areas that suffer from high penetration loss and path-loss to improve the coverage area. It is said that 30% of total served UEs in LTE networks are vehicular, which poses challenges in LTE networks due to their high mobility, high vehicular penetration loss (VPL), high path loss and high interference. Therefore, self-optimising and dynamic solutions are required to incorporate more intelligence into the current standard of LTE system. This makes the network more adaptive, able to handle peak data demands and cope with the increasing capacity for vehicular UEs. This research has drawn a performance comparison between vehicular UEs who are served by Mobile-Femto, Fixed-Femto and eNB under different VPL scales that range between highs and lows e.g. 0dB, 25dB and 40dB. Deploying Mobile-Femto under high VPLs has improved the vehicular UE Ergodic capacity by 1% and 5% under 25dB and 40dB VPL respectively as compared to other eNB technologies. A noticeable improvement is also seen in signal strength, throughput and spectral efficiency. Furthermore, this research discusses the co-channel interference between the eNB and the Mobile-Femto as both share the same resources and bandwidth. This has created an interference issue from the downlink signals of each other to their UEs. There were no previous solutions that worked efficiently in cases where UEs and base stations are mobile. Therefore, this research has adapted an efficient frequency reuse scheme that worked dynamically over distance and achieved improved results in the signal strength and throughput of Macro and Mobile-Femto UE as compared to previous interference management schemes e.g. Fractional Frequency Reuse factor1 (NoFFR-3) and Fractional Frequency Reuse factor3 (FFR-3). Also, the achieved results show that implementing the proposed handover scheme together with the Mobile-Femto deployment has reduced the dropped calls probability by 7% and the blocked calls probability by 14% compared to the direct transmission from the eNB. Furthermore, the outage signal probabilities under different VPLs have been reduced by 1.8% and 2% when the VPLs are 25dB and 40dB respectively compared to other eNB technologies

    Exclusion Zone Assisted eICIC in Massive MIMO Enabled Cognitive HetNets

    No full text
    corecore