3,246 research outputs found

    Excluding subdivisions of bounded degree graphs

    Full text link
    Let HH be a fixed graph. What can be said about graphs GG that have no subgraph isomorphic to a subdivision of HH? Grohe and Marx proved that such graphs GG satisfy a certain structure theorem that is not satisfied by graphs that contain a subdivision of a (larger) graph H1H_1. Dvo\v{r}\'ak found a clever strengthening---his structure is not satisfied by graphs that contain a subdivision of a graph H2H_2, where H2H_2 has "similar embedding properties" as HH. Building upon Dvo\v{r}\'ak's theorem, we prove that said graphs GG satisfy a similar structure theorem. Our structure is not satisfied by graphs that contain a subdivision of a graph H3H_3 that has similar embedding properties as HH and has the same maximum degree as HH. This will be important in a forthcoming application to well-quasi-ordering

    Distance-two coloring of sparse graphs

    Full text link
    Consider a graph G=(V,E)G = (V, E) and, for each vertex vVv \in V, a subset Σ(v)\Sigma(v) of neighbors of vv. A Σ\Sigma-coloring is a coloring of the elements of VV so that vertices appearing together in some Σ(v)\Sigma(v) receive pairwise distinct colors. An obvious lower bound for the minimum number of colors in such a coloring is the maximum size of a set Σ(v)\Sigma(v), denoted by ρ(Σ)\rho(\Sigma). In this paper we study graph classes FF for which there is a function ff, such that for any graph GFG \in F and any Σ\Sigma, there is a Σ\Sigma-coloring using at most f(ρ(Σ))f(\rho(\Sigma)) colors. It is proved that if such a function exists for a class FF, then ff can be taken to be a linear function. It is also shown that such classes are precisely the classes having bounded star chromatic number. We also investigate the list version and the clique version of this problem, and relate the existence of functions bounding those parameters to the recently introduced concepts of classes of bounded expansion and nowhere-dense classes.Comment: 13 pages - revised versio

    Packing Topological Minors Half-Integrally

    Full text link
    The packing problem and the covering problem are two of the most general questions in graph theory. The Erd\H{o}s-P\'{o}sa property characterizes the cases when the optimal solutions of these two problems are bounded by functions of each other. Robertson and Seymour proved that when packing and covering HH-minors for any fixed graph HH, the planarity of HH is equivalent with the Erd\H{o}s-P\'{o}sa property. Thomas conjectured that the planarity is no longer required if the solution of the packing problem is allowed to be half-integral. In this paper, we prove that this half-integral version of Erd\H{o}s-P\'{o}sa property holds with respect to the topological minor containment, which easily implies Thomas' conjecture. Indeed, we prove an even stronger statement in which those subdivisions are rooted at any choice of prescribed subsets of vertices. Precisely, we prove that for every graph HH, there exists a function ff such that for every graph GG, every sequence (Rv:vV(H))(R_v: v \in V(H)) of subsets of V(G)V(G) and every integer kk, either there exist kk subgraphs G1,G2,...,GkG_1,G_2,...,G_k of GG such that every vertex of GG belongs to at most two of G1,...,GkG_1,...,G_k and each GiG_i is isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each vV(H)v \in V(H), or there exists a set ZV(G)Z \subseteq V(G) with size at most f(k)f(k) intersecting all subgraphs of GG isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each vV(H)v \in V(H). Applications of this theorem include generalizations of algorithmic meta-theorems and structure theorems for HH-topological minor free (or HH-minor free) graphs to graphs that do not half-integrally pack many HH-topological minors (or HH-minors)

    Restricted frame graphs and a conjecture of Scott

    Full text link
    Scott proved in 1997 that for any tree TT, every graph with bounded clique number which does not contain any subdivision of TT as an induced subgraph has bounded chromatic number. Scott also conjectured that the same should hold if TT is replaced by any graph HH. Pawlik et al. recently constructed a family of triangle-free intersection graphs of segments in the plane with unbounded chromatic number (thereby disproving an old conjecture of Erd\H{o}s). This shows that Scott's conjecture is false whenever HH is obtained from a non-planar graph by subdividing every edge at least once. It remains interesting to decide which graphs HH satisfy Scott's conjecture and which do not. In this paper, we study the construction of Pawlik et al. in more details to extract more counterexamples to Scott's conjecture. For example, we show that Scott's conjecture is false for any graph obtained from K4K_4 by subdividing every edge at least once. We also prove that if GG is a 2-connected multigraph with no vertex contained in every cycle of GG, then any graph obtained from GG by subdividing every edge at least twice is a counterexample to Scott's conjecture.Comment: 21 pages, 8 figures - Revised version (note that we moved some of our results to an appendix

    Stable divisorial gonality is in NP

    Get PDF
    Divisorial gonality and stable divisorial gonality are graph parameters, which have an origin in algebraic geometry. Divisorial gonality of a connected graph GG can be defined with help of a chip firing game on GG. The stable divisorial gonality of GG is the minimum divisorial gonality over all subdivisions of edges of GG. In this paper we prove that deciding whether a given connected graph has stable divisorial gonality at most a given integer kk belongs to the class NP. Combined with the result that (stable) divisorial gonality is NP-hard by Gijswijt, we obtain that stable divisorial gonality is NP-complete. The proof consist of a partial certificate that can be verified by solving an Integer Linear Programming instance. As a corollary, we have that the number of subdivisions needed for minimum stable divisorial gonality of a graph with nn vertices is bounded by 2p(n)2^{p(n)} for a polynomial pp

    The structure of graphs not admitting a fixed immersion

    Get PDF
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    The structure of graphs not admitting a fixed immersion

    Full text link
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    Asymptotic enumeration of non-crossing partitions on surfaces

    Get PDF
    We generalize the notion of non-crossing partition on a disk to general surfaces with boundary. For this, we consider a surface S and introduce the number CS(n) of noncrossing partitions of a set of n points laying on the boundary of SPostprint (author's final draft
    corecore