21 research outputs found

    On Binary And Regular Matroids Without Small Minors

    Get PDF
    The results of this dissertation consist of excluded-minor results for Binary Matroids and excluded-minor results for Regular Matroids. Structural theorems on the relationship between minors and k-sums of matroids are developed here in order to provide some of these characterizations. Chapter 2 of the dissertation contains excluded-minor results for Binary Matroids. The first main result of this dissertation is a characterization of the internally 4-connected binary matroids with no minor that is isomorphic to the cycle matroid of the prism+e graph. This characterization generalizes results of Mayhew and Royle [18] for binary matroids and results of Dirac [8] and Lovász [15] for graphs. The results of this chapter are then extended from the class of internally 4-connected matroids to the class of 3-connected matroids. Chapter 3 of the dissertation contains the second main result, a decomposition theorem for regular matroids without certain minors. This decomposition theorem is used to obtain excluded-minor results for Regular Matroids. Wagner, Lovász, Oxley, Ding, Liu, and others have characterized many classes of graphs that are H-free for graphs H with at most twelve edges (see [7]). We extend several of these excluded-minor characterizations to regular matroids in Chapter 3. We also provide characterizations of regular matroids excluding several graphic matroids such as the octahedron, cube, and the Möbius Ladder on eight vertices. Both theoretical and computer-aided proofs of the results of Chapters 2 and 3 are provided in this dissertation

    Structure and Minors in Graphs and Matroids.

    Get PDF
    This dissertation establishes a number of theorems related to the structure of graphs and, more generally, matroids. In Chapter 2, we prove that a 3-connected graph G that has a triangle in which every single-edge contraction is 3-connected has a minor that uses the triangle and is isomorphic to K5 or the octahedron. We subsequently extend this result to the more general context of matroids. In Chapter 3, we specifically consider the triangle-rounded property that emerges in the results of Chapter 2. In particular, Asano, Nishizeki, and Seymour showed that whenever a 3-connected matroid M has a four-point-line-minor, and T is a triangle of M, there is a four-point-line-minor of M using T. We will prove that the four-point line is the only such matroid on at least four elements. In Chapter 4, we extend a result of Dirac which states that any set of n vertices of an n-connected graph lies in a cycle. We prove that if V\u27 is a set of at most 2n vertices in an n-connected graph G, then G has, as a minor, a cycle using all of the vertices of V\u27. In Chapter 5, we prove that, for any vertex v of an n-connected simple graph G, there is a n-spoked-wheel-minor of G using v and any n edges incident with v. We strengthen this result in the context of 4-connected graphs by proving that, for any vertex v of a 4-connected simple graph G, there is a K 5- or octahedron-minor of G using v and any four edges incident with v. Motivated by the results of Chapters 4 and 5, in Chapter 6, we introduce the concept of vertex-roundedness. Specifically, we provide a finite list of conditions under which one can determine which collections of graphs have the property that whenever a sufficiently highly connected graph has a minor in the collection, it has such a minor using any set of vertices of some fixed size

    Even Cycle and Even Cut Matroids

    Get PDF
    In this thesis we consider two classes of binary matroids, even cycle matroids and even cut matroids. They are a generalization of graphic and cographic matroids respectively. We focus on two main problems for these classes of matroids. We first consider the Isomorphism Problem, that is the relation between two representations of the same matroid. A representation of an even cycle matroid is a pair formed by a graph together with a special set of edges of the graph. Such a pair is called a signed graph. A representation for an even cut matroid is a pair formed by a graph together with a special set of vertices of the graph. Such a pair is called a graft. We show that two signed graphs representing the same even cycle matroid relate to two grafts representing the same even cut matroid. We then present two classes of signed graphs and we solve the Isomorphism Problem for these two classes. We conjecture that any two representations of the same even cycle matroid are either in one of these two classes, or are related by a local modification of a known operation, or form a sporadic example. The second problem we consider is finding the excluded minors for these classes of matroids. A difficulty when looking for excluded minors for these classes arises from the fact that in general the matroids may have an arbitrarily large number of representations. We define degenerate even cycle and even cut matroids. We show that a 3-connected even cycle matroid containing a 3-connected non-degenerate minor has, up to a simple equivalence relation, at most twice as many representations as the minor. We strengthen this result for a particular class of non-degenerate even cycle matroids. We also prove analogous results for even cut matroids

    Recognizing Even-Cycle and Even-Cut Matroids

    Get PDF
    Even-cycle and even-cut matroids are classes of binary matroids that generalize respectively graphic and cographic matroids. We give algorithms to check membership for these classes of matroids. We assume that the matroids are 3-connected and are given by their (0,1)-matrix representations. We first give an algorithm to check membership for p-cographic matroids that is a subclass of even-cut matroids. We use this algorithm to construct algorithms for membership problems for even-cycle and even-cut matroids and the running time of these algorithms is polynomial in the size of the matrix representations. However, we will outline only how theoretical results can be used to develop polynomial time algorithms and omit the details of algorithms

    Representations of even-cycle and even-cut matroids

    Get PDF
    In this thesis, two classes of binary matroids will be discussed: even-cycle and even-cut matroids, together with problems which are related to their graphical representations. Even-cycle and even-cut matroids can be represented as signed graphs and grafts, respectively. A signed graph is a pair (G,Σ)(G,\Sigma) where GG is a graph and Σ\Sigma is a subset of edges of GG. A cycle CC of GG is a subset of edges of GG such that every vertex of the subgraph of GG induced by CC has an even degree. We say that CC is even in (G,Σ)(G,\Sigma) if ∣C∩Σ∣|C \cap \Sigma| is even. A matroid MM is an even-cycle matroid if there exists a signed graph (G,Σ)(G,\Sigma) such that circuits of MM precisely corresponds to inclusion-wise minimal non-empty even cycles of (G,Σ)(G,\Sigma). A graft is a pair (G,T)(G,T) where GG is a graph and TT is a subset of vertices of GG such that each component of GG contains an even number of vertices in TT. Let UU be a subset of vertices of GG and let D:=deltaG(U)D:= delta_G(U) be a cut of GG. We say that DD is even in (G,T)(G, T) if ∣U∩T∣|U \cap T| is even. A matroid MM is an even-cut matroid if there exists a graft (G,T)(G,T) such that circuits of MM corresponds to inclusion-wise minimal non-empty even cuts of (G,T)(G,T).\\ This thesis is motivated by the following three fundamental problems for even-cycle and even-cut matroids with their graphical representations. (a) Isomorphism problem: what is the relationship between two representations? (b) Bounding the number of representations: how many representations can a matroid have? (c) Recognition problem: how can we efficiently determine if a given matroid is in the class? And how can we find a representation if one exists? These questions for even-cycle and even-cut matroids will be answered in this thesis, respectively. For Problem (a), it will be characterized when two 44-connected graphs G1G_1 and G2G_2 have a pair of signatures (Σ1,Σ2)(\Sigma_1, \Sigma_2) such that (G1,Σ1)(G_1, \Sigma_1) and (G2,Σ2)(G_2, \Sigma_2) represent the same even-cycle matroids. This also characterize when G1G_1 and G2G_2 have a pair of terminal sets (T1,T2)(T_1, T_2) such that (G1,T1)(G_1,T_1) and (G2,T2)(G_2,T_2) represent the same even-cut matroid. For Problem (b), we introduce another class of binary matroids, called pinch-graphic matroids, which can generate expo\-nentially many representations even when the matroid is 33-connected. An even-cycle matroid is a pinch-graphic matroid if there exists a signed graph with a blocking pair. A blocking pair of a signed graph is a pair of vertices such that every odd cycles intersects with at least one of them. We prove that there exists a constant cc such that if a matroid is even-cycle matroid that is not pinch-graphic, then the number of representations is bounded by cc. An analogous result for even-cut matroids that are not duals of pinch-graphic matroids will be also proven. As an application, we construct algorithms to solve Problem (c) for even-cycle, even-cut matroids. The input matroids of these algorithms are binary, and they are given by a (0,1)(0,1)-matrix over the finite field \gf(2). The time-complexity of these algorithms is polynomial in the size of the input matrix

    Hilbert bases of cuts.

    Get PDF
    corecore