9 research outputs found

    Packing Directed Cycles Quarter- and Half-Integrally

    Full text link
    The celebrated Erd\H{o}s-P\'osa theorem states that every undirected graph that does not admit a family of kk vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(klogk)O(k \log k). After being known for long as Younger's conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with the quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph GG there is no family of kk cycles such that every vertex of GG is in at most four of the cycles, then there exists a feedback vertex set in GG of size O(k4)O(k^4). Furthermore, a variant of our proof shows that if in a directed graph GG there is no family of kk cycles such that every vertex of GG is in at most two of the cycles, then there exists a feedback vertex set in GG of size O(k6)O(k^6). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers aa and bb, if a directed graph GG has directed treewidth Ω(a6b8log2(ab))\Omega(a^6 b^8 \log^2(ab)), then one can find in GG a family of aa subgraphs, each of directed treewidth at least bb, such that every vertex of GG is in at most four subgraphs.Comment: Accepted to European Symposium on Algorithms (ESA '19

    Product structure of graph classes with bounded treewidth

    Full text link
    We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the "underlying treewidth" of a graph class G\mathcal{G} to be the minimum non-negative integer cc such that, for some function ff, for every graph GG{G \in \mathcal{G}} there is a graph HH with tw(H)c{\text{tw}(H) \leq c} such that GG is isomorphic to a subgraph of HKf(tw(G)){H \boxtimes K_{f(\text{tw}(G))}}. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth 3; the class of Ks,tK_{s,t}-minor-free graphs has underlying treewidth ss (for tmax{s,3}{t \geq \max\{s,3\}}); and the class of KtK_t-minor-free graphs has underlying treewidth t2{t-2}. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no HH subgraph has bounded underlying treewidth if and only if every component of HH is a subdivided star, and that the class of graphs with no induced HH subgraph has bounded underlying treewidth if and only if every component of HH is a star

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore