33,944 research outputs found

    Exchangeable Variable Models

    Full text link
    A sequence of random variables is exchangeable if its joint distribution is invariant under variable permutations. We introduce exchangeable variable models (EVMs) as a novel class of probabilistic models whose basic building blocks are partially exchangeable sequences, a generalization of exchangeable sequences. We prove that a family of tractable EVMs is optimal under zero-one loss for a large class of functions, including parity and threshold functions, and strictly subsumes existing tractable independence-based model families. Extensive experiments show that EVMs outperform state of the art classifiers such as SVMs and probabilistic models which are solely based on independence assumptions.Comment: ICML 201

    Nonparametric estimation of non-exchangeable latent-variable models

    Get PDF
    We propose a two-step method to nonparametrically estimate multivariate models in which the observed outcomes are independent conditional on a discrete latent variable. Applications include microeconometric models with unobserved types of agents, regime-switching models, and models with misclassification error. In the first step, we estimate weights that transform moments of the marginal distribution of the data into moments of the conditional distribution of the data for given values of the latent variable. In the second step, these conditional moments are estimated as weighted sample averages. We illustrate the method by estimating a model of wages with unobserved heterogeneity on PSID data

    Nonparametric estimation of non-exchangeable latent-variable models

    Get PDF
    We propose a two-step method to nonparametrically estimate multivariate models in which the observed outcomes are independent conditional on a discrete latent variable. Applications include microeconometric models with unobserved types of agents, regime-switching models, and models with misclassification error. In the first step, we estimate weights that transform moments of the marginal distribution of the data into moments of the conditional distribution of the data for given values of the latent variable. In the second step, these conditional moments are estimated as weighted sample averages. We illustrate the method by estimating a model of wages with unobserved heterogeneity on PSID data

    Regression of binary network data with exchangeable latent errors

    Full text link
    Undirected, binary network data consist of indicators of symmetric relations between pairs of actors. Regression models of such data allow for the estimation of effects of exogenous covariates on the network and for prediction of unobserved data. Ideally, estimators of the regression parameters should account for the inherent dependencies among relations in the network that involve the same actor. To account for such dependencies, researchers have developed a host of latent variable network models, however, estimation of many latent variable network models is computationally onerous and which model is best to base inference upon may not be clear. We propose the Probit Exchangeable (PX) Model for undirected binary network data that is based on an assumption of exchangeability, which is common to many of the latent variable network models in the literature. The PX model can represent the second moments of any exchangeable network model, yet specifies no particular parametric model. We present an algorithm for obtaining the maximum likelihood estimator of the PX model, as well as a modified version of the algorithm that is extremely computationally efficient and provides an approximate estimator. Using simulation studies, we demonstrate the improvement in estimation of regression coefficients of the proposed model over existing latent variable network models. In an analysis of purchases of politically-aligned books, we demonstrate political polarization in purchase behavior and show that the proposed estimator significantly reduces runtime relative to estimators of latent variable network models while maintaining predictive performance

    Tractability through Exchangeability: A New Perspective on Efficient Probabilistic Inference

    Full text link
    Exchangeability is a central notion in statistics and probability theory. The assumption that an infinite sequence of data points is exchangeable is at the core of Bayesian statistics. However, finite exchangeability as a statistical property that renders probabilistic inference tractable is less well-understood. We develop a theory of finite exchangeability and its relation to tractable probabilistic inference. The theory is complementary to that of independence and conditional independence. We show that tractable inference in probabilistic models with high treewidth and millions of variables can be understood using the notion of finite (partial) exchangeability. We also show that existing lifted inference algorithms implicitly utilize a combination of conditional independence and partial exchangeability.Comment: In Proceedings of the 28th AAAI Conference on Artificial Intelligenc
    corecore