4,307 research outputs found

    Efficient Algorithm for Two-Center Coulomb and Exchange Integrals of Electronic Prolate Spheroidal Orbitals

    Full text link
    We present a fast algorithm to calculate Coulomb/exchange integrals of prolate spheroidal electronic orbitals, which are the exact solutions of the single-electron, two-center Schr\"odinger equation for diatomic molecules. Our approach employs Neumann's expansion of the Coulomb repulsion 1/|x-y|, solves the resulting integrals symbolically in closed form and subsequently performs a numeric Taylor expansion for efficiency. Thanks to the general form of the integrals, the obtained coefficients are independent of the particular wavefunctions and can thus be reused later. Key features of our algorithm include complete avoidance of numeric integration, drafting of the individual steps as fast matrix operations and high accuracy due to the exponential convergence of the expansions. Application to the diatomic molecules O2 and CO exemplifies the developed methods, which can be relevant for a quantitative understanding of chemical bonds in general.Comment: 27 pages, 9 figure

    Adsorption of CO on a Platinum (111) surface - a study within a four-component relativistic density functional approach

    Get PDF
    We report on results of a theoretical study of the adsorption process of a single carbon oxide molecule on a Platinum (111) surface. A four-component relativistic density functional method was applied to account for a proper description of the strong relativistic effects. A limited number of atoms in the framework of a cluster approach is used to describe the surface. Different adsorption sites are investigated. We found that CO is preferably adsorbed at the top position.Comment: 23 Pages with 4 figure

    QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion Quantum Monte Carlo

    Get PDF
    We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing accuracy. Advances in real space methods include techniques for accurate computation of band gaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods including GW and density functional based techniques. To provide an improved foundation for these calculations we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK

    Analytical calculation of pressure for confined atomic and molecular systems using the eXtreme-Pressure Polarizable Continuum Model

    Full text link
    We show that the pressure acting on atoms and molecular systems within the compression cavity of the eXtreme-Pressure Polarizable Continuum method can be expressed in terms of the electron density of the systems and of the Pauli-repulsion confining potential. The analytical expression holds for spherical cavities as well as for cavities constructed from van der Waals spheres of the constituting atoms of the molecular systems

    Redox reactions with empirical potentials: Atomistic battery discharge simulations

    Full text link
    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.Comment: 14 pages, 10 figure
    corecore