15 research outputs found

    On the excessive [m]-index of a tree

    Full text link
    The excessive [m]-index of a graph G is the minimum number of matchings of size m needed to cover the edge-set of G. We call a graph G [m]-coverable if its excessive [m]-index is finite. Obviously the excessive [1]-index is |E(G)| for all graphs and it is an easy task the computation of the excessive [2]-index for a [2]-coverable graph. The case m=3 is completely solved by Cariolaro and Fu in 2009. In this paper we prove a general formula to compute the excessive [4]-index of a tree and we conjecture a possible generalization for any value of m. Furthermore, we prove that such a formula does not work for the excessive [4]-index of an arbitrary graph.Comment: 12 pages, 7 figures, to appear in Discrete Applied Mathematic

    Excessive [l,m]-factorizations

    Get PDF
    Given two positive integers l and m, with l 64m, an [l,m]-covering of a graph G is a set M of matchings of G whose union is the edge set of G and such that l 64;|M| 64m for every M. An [l,m]-covering M of G is an excessive [l,m]-factorization of G if the cardinality of M is as small as possible. The number of matchings in an excessive [l,m]-factorization of G (or 1e, if G does not admit an excessive [l,m]-factorization) is a graph parameter called the excessive [l,m]-index of G and denoted by \u3c7[l,m]\u2032(G). In this paper we study such parameter. Our main result is a general formula for the excessive [l,m]-index of a graph G in terms of other graph parameters. Furthermore, we give a polynomial time algorithm which computes \u3c7[l,m]\u2032(G) for any fixed constants l and m and outputs an excessive [l,m]-factorization of G, whenever the latter exists

    An equivalent formulation of the Fan-Raspaud Conjecture and related problems

    Get PDF
    In 1994, it was conjectured by Fan and Raspaud that every simple bridgeless cubic graph has three perfect matchings whose intersection is empty. In this paper we answer a question recently proposed by Mkrtchyan and Vardanyan, by giving an equivalent formulation of the Fan-Raspaud Conjecture. We also study a possibly weaker conjecture originally proposed by the first author, which states that in every simple bridgeless cubic graph there exist two perfect matchings such that the complement of their union is a bipartite graph. Here, we show that this conjecture can be equivalently stated using a variant of Petersen-colourings, we prove it for graphs having oddness at most four and we give a natural extension to bridgeless cubic multigraphs and to certain cubic graphs having bridges

    Contents

    Get PDF

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure
    corecore