238 research outputs found

    Modeling of complex-valued Wiener systems using B-spline neural network

    No full text
    In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate Bspline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss–Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches

    Modelling and inverting complex-valued Wiener systems

    No full text
    We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memor

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Hamiltonicity, Pancyclicity, and Cycle Extendability in Graphs

    Get PDF
    The study of cycles, particularly Hamiltonian cycles, is very important in many applications. Bondy posited his famous metaconjecture, that every condition sufficient for Hamiltonicity actually guarantees a graph is pancyclic. Pancyclicity is a stronger structural property than Hamiltonicity. An even stronger structural property is for a graph to be cycle extendable. Hendry conjectured that any graph which is Hamiltonian and chordal is cycle extendable. In this dissertation, cycle extendability is investigated and generalized. It is proved that chordal 2-connected K1,3-free graphs are cycle extendable. S-cycle extendability was defined by Beasley and Brown, where S is any set of positive integers. A conjecture is presented that Hamiltonian chordal graphs are {1, 2}-cycle extendable. Dirac’s Theorem is an classic result establishing a minimum degree condition for a graph to be Hamiltonian. Ore’s condition is another early result giving a sufficient condition for Hamiltonicity. In this dissertation, generalizations of Dirac’s and Ore’s Theorems are presented. The Chvatal-Erdos condition is a result showing that if the maximum size of an independent set in a graph G is less than or equal to the minimum number of vertices whose deletion increases the number of components of G, then G is Hamiltonian. It is proved here that the Chvatal-Erdos condition guarantees that a graph is cycle extendable. It is also shown that a graph having a Hamiltonian elimination ordering is cycle extendable. The existence of Hamiltonian cycles which avoid sets of edges of a certain size and certain subgraphs is a new topic recently investigated by Harlan, et al., which clearly has applications to scheduling and communication networks among other things. The theory is extended here to bipartite graphs. Specifically, the conditions for the existence of a Hamiltonian cycle that avoids edges, or some subgraph of a certain size, are determined for the bipartite case. Briefly, this dissertation contributes to the state of the art of Hamiltonian cycles, cycle extendability and edge and graph avoiding Hamiltonian cycles, which is an important area of graph theory

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Stochastic spreading on complex networks

    Get PDF
    Complex interacting systems are ubiquitous in nature and society. Computational modeling of these systems is, therefore, of great relevance for science and engineering. Complex networks are common representations of these systems (e.g., friendship networks or road networks). Dynamical processes (e.g., virus spreading, traffic jams) that evolve on these networks are shaped and constrained by the underlying connectivity. This thesis provides numerical methods to study stochastic spreading processes on complex networks. We consider the processes as inherently probabilistic and analyze their behavior through the lens of probability theory. While powerful theoretical frameworks (like the SIS-epidemic model and continuous-time Markov chains) already exist, their analysis is computationally challenging. A key contribution of the thesis is to ease the computational burden of these methods. Particularly, we provide novel methods for the efficient stochastic simulation of these processes. Based on different simulation studies, we investigate techniques for optimal vaccine distribution and critically address the usage of mathematical models during the Covid-19 pandemic. We also provide model-reduction techniques that translate complicated models into simpler ones that can be solved without resorting to simulations. Lastly, we show how to infer the underlying contact data from node-level observations.Komplexe, interagierende Systeme sind in Natur und Gesellschaft allgegenwärtig. Die computergestützte Modellierung dieser Systeme ist daher von immenser Bedeutung für Wissenschaft und Technik. Netzwerke sind eine gängige Art, diese Systeme zu repräsentieren (z. B. Freundschaftsnetzwerke, Straßennetze). Dynamische Prozesse (z. B. Epidemien, Staus), die sich auf diesen Netzwerken ausbreiten, werden durch die spezifische Konnektivität geformt. In dieser Arbeit werden numerische Methoden zur Untersuchung stochastischer Ausbreitungsprozesse in komplexen Netzwerken entwickelt. Wir betrachten die Prozesse als inhärent probabilistisch und analysieren ihr Verhalten nach wahrscheinlichkeitstheoretischen Fragestellungen. Zwar gibt es bereits theoretische Grundlagen und Paradigmen (wie das SIS-Epidemiemodell und zeitkontinuierliche Markov-Ketten), aber ihre Analyse ist rechnerisch aufwändig. Ein wesentlicher Beitrag dieser Arbeit besteht darin, die Rechenlast dieser Methoden zu verringern. Wir erforschen Methoden zur effizienten Simulation dieser Prozesse. Anhand von Simulationsstudien untersuchen wir außerdem Techniken für optimale Impfstoffverteilung und setzen uns kritisch mit der Verwendung mathematischer Modelle bei der Covid-19-Pandemie auseinander. Des Weiteren führen wir Modellreduktionen ein, mit denen komplizierte Modelle in einfachere umgewandelt werden können. Abschließend zeigen wir, wie man von Beobachtungen einzelner Knoten auf die zugrunde liegende Netzwerkstruktur schließt

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science
    corecore