88,321 research outputs found

    Integrating factors for second order ODEs

    Get PDF
    A systematic algorithm for building integrating factors of the form mu(x,y), mu(x,y') or mu(y,y') for second order ODEs is presented. The algorithm can determine the existence and explicit form of the integrating factors themselves without solving any differential equations, except for a linear ODE in one subcase of the mu(x,y) problem. Examples of ODEs not having point symmetries are shown to be solvable using this algorithm. The scheme was implemented in Maple, in the framework of the "ODEtools" package and its ODE-solver. A comparison between this implementation and other computer algebra ODE-solvers in tackling non-linear examples from Kamke's book is shown.Comment: 21 pages - original version submitted Nov/1997. Related Maple programs for finding integrating factors together with the ODEtools package (versions for MapleV R4 and MapleV R5) are available at http://lie.uwaterloo.ca/odetools.ht

    Encouraging versatile thinking in algebra using the computer

    Get PDF
    In this article we formulate and analyse some of the obstacles to understanding the notion of a variable, and the use and meaning of algebraic notation, and report empirical evidence to support the hypothesis that an approach using the computer will be more successful in overcoming these obstacles. The computer approach is formulated within a wider framework ofversatile thinking in which global, holistic processing complements local, sequential processing. This is done through a combination of programming in BASIC, physical activities which simulate computer storage and manipulation of variables, and specific software which evaluates expressions in standard mathematical notation. The software is designed to enable the user to explore examples and non-examples of a concept, in this case equivalent and non-equivalent expressions. We call such a piece of software ageneric organizer because if offers examples and non-examples which may be seen not just in specific terms, but as typical, or generic, examples of the algebraic processes, assisting the pupil in the difficult task of abstracting the more general concept which they represent. Empirical evidence from several related studies shows that such an approach significantly improves the understanding of higher order concepts in algebra, and that any initial loss in manipulative facility through lack of practice is more than made up at a later stage

    Computer Algebra Solving of Second Order ODEs Using Symmetry Methods

    Get PDF
    An update of the ODEtools Maple package, for the analytical solving of 1st and 2nd order ODEs using Lie group symmetry methods, is presented. The set of routines includes an ODE-solver and user-level commands realizing most of the relevant steps of the symmetry scheme. The package also includes commands for testing the returned results, and for classifying 1st and 2nd order ODEs.Comment: 24 pages, LaTeX, Soft-package (On-Line help) and sample MapleV sessions available at: http://dft.if.uerj.br/odetools.htm or http://lie.uwaterloo.ca/odetools.ht

    Computer Algebra Solving of First Order ODEs Using Symmetry Methods

    Get PDF
    A set of Maple V R.3/4 computer algebra routines for the analytical solving of 1st. order ODEs, using Lie group symmetry methods, is presented. The set of commands includes a 1st. order ODE-solver and routines for, among other things: the explicit determination of the coefficients of the infinitesimal symmetry generator; the construction of the most general invariant 1st. order ODE under given symmetries; the determination of the canonical coordinates of the underlying invariant group; and the testing of the returned results.Comment: 14 pages, LaTeX, submitted to Computer Physics Communications. Soft-package (On-Line Help) and sample MapleV session available at: http://dft.if.uerj.br/symbcomp.htm or ftp://dft.if.uerj.br/pdetool

    Active Learning in Sophomore Mathematics: A Cautionary Tale

    Get PDF
    Math 245: Multivariate Calculus, Linear Algebra, and Differential Equations with Computer I is the first half of a year-long sophomore sequence that emphasizes the subjects\u27 interconnections and grounding in real-world applications. The sequence is aimed primarily at students from physical and mathematical sciences and engineering. In Fall, 1998, as a result of my affiliation with the Science, Technology, Engineering, and Mathematics Teacher Education Collaborative (STEMTEC), I continued and extended previously-introduced reforms in Math 245, including: motivating mathematical ideas with real-world phenomena; student use of computer technology; and, learning by discovery and experimentation. I also introduced additional pedagogical strategies for more actively involving the students in their own learning—a collaborative exam component and in-class problem-solving exercises. The in-class exercises were well received and usually productive; two were especially effective at revealing normally unarticulated thinking. The collaborative exam component was of questionable benefit and was subsequently abandoned. Overall student performance, as measured by traditional means, was disappointing. Among the plausible reasons for this result is that too much material was covered in too short a time. Experience here suggests that active-learning strategies can be useful, but are unlikely to succeed unless one sets realistic limits to content coverage
    • …
    corecore