4 research outputs found

    Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We investigate how to make the surface of a convex polyhedron (a polytope) by folding up a polygon and gluing its perimeter shut, and the reverse process of cutting open a polytope and unfolding it to a polygon. We explore basic enumeration questions in both directions: Given a polygon, how many foldings are there? Given a polytope, how many unfoldings are there to simple polygons? Throughout we give special attention to convex polygons, and to regular polygons. We show that every convex polygon folds to an infinite number of distinct polytopes, but that their number of combinatorially distinct gluings is polynomial. There are, however, simple polygons with an exponential number of distinct gluings. In the reverse direction, we show that there are polytopes with an exponential number of distinct cuttings that lead to simple unfoldings. We establish necessary conditions for a polytope to have convex unfoldings, implying, for example, that among the Platonic solids, only the tetrahedron has a convex unfolding. We provide an inventory of the polytopes that may unfold to regular polygons, showing that, for n>6, there is essentially only one class of such polytopes.Comment: 54 pages, 33 figure

    Flat Zipper-Unfolding Pairs for Platonic Solids

    Get PDF
    We show that four of the five Platonic solids' surfaces may be cut open with a Hamiltonian path along edges and unfolded to a polygonal net each of which can "zipper-refold" to a flat doubly covered parallelogram, forming a rather compact representation of the surface. Thus these regular polyhedra have particular flat "zipper pairs." No such zipper pair exists for a dodecahedron, whose Hamiltonian unfoldings are "zip-rigid." This report is primarily an inventory of the possibilities, and raises more questions than it answers.Comment: 15 pages, 14 figures, 8 references. v2: Added one new figure. v3: Replaced Fig. 13 to remove a duplicate unfolding, reducing from 21 to 20 the distinct unfoldings. v4: Replaced Fig. 13 again, 18 distinct unfolding

    Folding concave polygons into convex polyhedra: The L-Shape

    Get PDF
    Mathematicians have long been asking the question: Can a given convex polyhedron can be unfolded into a polygon and then refolded into any other convex polyhedron? One facet of this question investigates the space of polyhedra that can be realized from folding a given polygon. While convex polygons are relatively well understood, there are still many open questions regarding the foldings of non-convex polygons. We analyze these folded realizations and their volumes derived from the polygonal family of `L-shapes,\u27 parallelograms with another parallelogram removed from a corner. We investigate questions of maximal volume, diagonal flipping, and topological connectedness and discuss the family of polyhedra that share a L-shape polygonal net

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore