2,930 research outputs found

    A Model of Operant Conditioning for Adaptive Obstacle Avoidance

    Full text link
    We have recently introduced a self-organizing adaptive neural controller that learns to control movements of a wheeled mobile robot toward stationary or moving targets, even when the robot's kinematics arc unknown, or when they change unexpectedly during operation. The model has been shown to outperform other traditional controllers, especially in noisy environments. This article describes a neural network module for obstacle avoidance that complements our previous work. The obstacle avoidance module is based on a model of classical and operant conditioning first proposed by Grossberg ( 1971). This module learns the patterns of ultrasonic sensor activation that predict collisions as the robot navigates in an unknown cluttered environment. Along with our original low-level controller, this work illustrates the potential of applying biologically inspired neural networks to the areas of adaptive robotics and control.Office of Naval Research (N00014-95-1-0409, Young Investigator Award

    Measurement of the production of charged pions by protons on a tantalum target

    Get PDF
    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and 0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ{{\mathrm{d}^2 \sigma}} / {{\mathrm{d}p\mathrm{d}\theta}} at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys. J.

    Air vehicle simulator: an application for a cable array robot

    Get PDF
    The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system. ©2005 IEEE

    An 8-DOF dual-arm system for advanced teleoperation performance experiments

    Get PDF
    This paper describes the electro-mechanical and control features of an 8-DOF manipulator manufactured by AAI Corporation and installed at the Jet Propulsion Lab. (JPL) in a dual-arm setting. The 8-DOF arm incorporates a variety of features not found in other lab or industrial manipulators. Some of the unique features are: 8-DOF revolute configuration with no lateral offsets at joint axes; 1 to 5 payload to weight ratio with 20 kg (44 lb) payload at a 1.75 m (68.5 in.) reach; joint position measurement with dual relative encoders and potentiometer; infinite roll of joint 8 with electrical and fiber optic slip rings; internal fiber optic link of 'smart' end effectors; four-axis wrist; graphite epoxy links; high link and joint stiffness; use of an upgraded JPL Universal Motor Controller (UMC) capable of driving up to 16 joints. The 8-DOF arm is equipped with a 'smart' end effector which incorporates a 6-DOF forcemoment sensor at the end effector base and grasp force sensors at the base of the parallel jaws. The 8-DOF arm is interfaced to a 6 DOF force reflecting hand controller. The same system is duplicated for and installed at NASA-Langley

    Efficient visual grasping alignment for cylinders

    Get PDF
    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available

    Localizing a quadrotor with collisions: novel sensor design and applications to particle filtering

    Full text link
    Collisions are typically seen as adverse events for quadrotors, with numerous researchers designing cages for minimizing the effect of impacts on the vehicles. In this thesis, we reverse this paradigm, treating collisions as an additional opportunity for localization. In order to gather collision information, a touch-only sensor with a protective frame is designed to sense the 2-D relative displacement due to inertial force between vehicle and the frame while collision happens. We provide a mathematical model that represents the displacement in terms of the poses of the protective frame and quadrotor is constructed and solved numerically, which helps analyze the distance from obstacles to the vehicle and collision direction. At last, a particle filter based localization observing the collision status is simulated, which verifies the theoretical feasibility utilizing collision information to perform localization in a known environment

    On the design of multi-platform parallel mechanisms

    Get PDF
    Parallel mechanisms have been examined in more and more detail over the past two decades. Parallel mechanisms are essentially the same design layout, a base, multiple legs/limbs, and a moving platform with a single end-effector to allow the mechanism to complete its desired function. Recently, several research groups have begun looking into multiple-platform parallel mechanisms and/or multiple end-effectors for parallel mechanisms. The reason for the research in this new form of parallel mechanism stems from multiple sources, such as applications that would require multiple handling points being accessed simultaneously, a more controlled gripper motion by having the jaws of the gripper being attached at different platforms, or to increasing the workload of the mechanism. The aim of the thesis is to modify the design process of parallel mechanisms so that it will support the development of a new parallel mechanism with multiple platforms capable of moving relative to each other in at least 1-DOF and to analyse the improvements made on the traditional single platform mechanism through a comparison of the power requirements for each mechanism. Throughout the thesis, a modified approach to the type synthesis of a parallel mechanism with multiple moving platforms is proposed and used to create several case study mechanisms. Additionally, this thesis presents a new series of methods for determining the workspace, inverse kinematic and dynamic models, and the integration of these systems into the design of a control system. All methods are vetted through case studies where they are judged based on the results gained from existing published data. Lastly, the concepts in this thesis are combined to produce a physical multi-platform parallel mechanism case study with the process being developed at each stage. Finally, a series of proposed topics of future research are listed along with the limitations and contributions of this work
    corecore