3,237 research outputs found

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Capture, Learning, and Synthesis of 3D Speaking Styles

    Full text link
    Audio-driven 3D facial animation has been widely explored, but achieving realistic, human-like performance is still unsolved. This is due to the lack of available 3D datasets, models, and standard evaluation metrics. To address this, we introduce a unique 4D face dataset with about 29 minutes of 4D scans captured at 60 fps and synchronized audio from 12 speakers. We then train a neural network on our dataset that factors identity from facial motion. The learned model, VOCA (Voice Operated Character Animation) takes any speech signal as input - even speech in languages other than English - and realistically animates a wide range of adult faces. Conditioning on subject labels during training allows the model to learn a variety of realistic speaking styles. VOCA also provides animator controls to alter speaking style, identity-dependent facial shape, and pose (i.e. head, jaw, and eyeball rotations) during animation. To our knowledge, VOCA is the only realistic 3D facial animation model that is readily applicable to unseen subjects without retargeting. This makes VOCA suitable for tasks like in-game video, virtual reality avatars, or any scenario in which the speaker, speech, or language is not known in advance. We make the dataset and model available for research purposes at http://voca.is.tue.mpg.de.Comment: To appear in CVPR 201

    The Line of Action: an Intuitive Interface for Expressive Character Posing

    Get PDF
    International audienceThe line of action is a conceptual tool often used by cartoonists and illustrators to help make their figures more consistent and more dramatic. We often see the expression of characters--may it be the dynamism of a super hero, or the elegance of a fashion model--well captured and amplified by a single aesthetic line. Usually this line is laid down in early stages of the drawing and used to describe the body's principal shape. By focusing on this simple abstraction, the person drawing can quickly adjust and refine the overall pose of his or her character from a given viewpoint. In this paper, we propose a mathematical definition of the line of action (LOA), which allows us to automatically align a 3D virtual character to a user specified LOA by solving an optimization problem. We generalize this framework to other types of lines found in the drawing literature, such as secondary lines used to place arms. Finally, we show a wide range of poses and animations that were rapidly created using our system

    Creating Procedural Animation for the Terrestrial Locomotion of Tentacled Digital Creatures

    Get PDF
    This thesis presents a prototype system to develop procedural animation for the goal-directed terrestrial locomotion of tentacled digital creatures. Creating locomotion for characters with multiple highly deformable limbs is time and labor intensive. This prototype system presents an interactive real-time physically-based solution to procedurally create tentacled creatures and simulate their goal-directed movement about an environment. Artistic control over both the motion path of the creature and the localized behavior of the tentacles is maintained. This system functions as a stand-alone simulation and a tool has been created to integrate it into production software. Applications include use in visual effects and animation where generalized behavior of tentacled creatures is required
    corecore