118,421 research outputs found

    Controller Synthesis for Autonomous Systems Interacting With Human Operators

    Get PDF
    We propose an approach to synthesize control protocols for autonomous systems that account for uncertainties and imperfections in interactions with human operators. As an illustrative example, we consider a scenario involving road network surveillance by an unmanned aerial vehicle (UAV) that is controlled remotely by a human operator but also has a certain degree of autonomy. Depending on the type (i.e., probabilistic and/or nondeterministic) of knowledge about the uncertainties and imperfections in the operatorautonomy interactions, we use abstractions based on Markov decision processes and augment these models to stochastic two-player games. Our approach enables the synthesis of operator-dependent optimal mission plans for the UAV, highlighting the effects of operator characteristics (e.g., workload, proficiency, and fatigue) on UAV mission performance; it can also provide informative feedback (e.g., Pareto curves showing the trade-offs between multiple mission objectives), potentially assisting the operator in decision-making

    Procedural Modeling and Physically Based Rendering for Synthetic Data Generation in Automotive Applications

    Full text link
    We present an overview and evaluation of a new, systematic approach for generation of highly realistic, annotated synthetic data for training of deep neural networks in computer vision tasks. The main contribution is a procedural world modeling approach enabling high variability coupled with physically accurate image synthesis, and is a departure from the hand-modeled virtual worlds and approximate image synthesis methods used in real-time applications. The benefits of our approach include flexible, physically accurate and scalable image synthesis, implicit wide coverage of classes and features, and complete data introspection for annotations, which all contribute to quality and cost efficiency. To evaluate our approach and the efficacy of the resulting data, we use semantic segmentation for autonomous vehicles and robotic navigation as the main application, and we train multiple deep learning architectures using synthetic data with and without fine tuning on organic (i.e. real-world) data. The evaluation shows that our approach improves the neural network's performance and that even modest implementation efforts produce state-of-the-art results.Comment: The project web page at http://vcl.itn.liu.se/publications/2017/TKWU17/ contains a version of the paper with high-resolution images as well as additional materia

    The Right (Angled) Perspective: Improving the Understanding of Road Scenes Using Boosted Inverse Perspective Mapping

    Full text link
    Many tasks performed by autonomous vehicles such as road marking detection, object tracking, and path planning are simpler in bird's-eye view. Hence, Inverse Perspective Mapping (IPM) is often applied to remove the perspective effect from a vehicle's front-facing camera and to remap its images into a 2D domain, resulting in a top-down view. Unfortunately, however, this leads to unnatural blurring and stretching of objects at further distance, due to the resolution of the camera, limiting applicability. In this paper, we present an adversarial learning approach for generating a significantly improved IPM from a single camera image in real time. The generated bird's-eye-view images contain sharper features (e.g. road markings) and a more homogeneous illumination, while (dynamic) objects are automatically removed from the scene, thus revealing the underlying road layout in an improved fashion. We demonstrate our framework using real-world data from the Oxford RobotCar Dataset and show that scene understanding tasks directly benefit from our boosted IPM approach.Comment: equal contribution of first two authors, 8 full pages, 6 figures, accepted at IV 201

    The New Airport and its Urban Region: Evaluating Transport Linkages

    Get PDF
    Privatized airports are emerging as significant transportation and logistics hubs competing with traditional CBDs as activity centres with significant environmental, social and economic impacts. The major implications for transportation planning and evaluation of options have been highlighted as: the difficulty in arriving at an agreed set of relative weights to be attached to each objective; the need to undertake any interface analysis at the regional scale; the need to model the complex nature of the interaction between mixed land use activities within the emerging airport precinct and the supply, pricing and regulation of the relevant transportation links; and the relevance of 'option value' concepts when evaluating transit access to airports
    • …
    corecore