244,638 research outputs found

    Learning different task spaces: how explored density aligns the Quiet Eye.

    Get PDF
    In the current study, predictions of a theoretical account to the explanation of the Quiet Eye (QE) were investigated. To this end, by manipulating the learning environment, participants (n = 52) learned an underhand throwing task which required to explore task-solution spaces of low vs. high density over a 4-week training phase (640 training trials). Although throwing performance was improved, surprisingly, in posttest and retention test shorter QE durations were found. It is speculated that on a short-time learning scale this effect might be explained by more efficient information processing. Moreover, a trend was observed which suggests that-in line with the inhibition hypothesis-when exploring high-density task-solution spaces longer QE durations are required. However, the rather small effect sizes necessitate further research, which will allow to manipulate the response-effect mappings more directly as, for example, in virtual environments

    Fostering reflection in the training of speech-receptive action

    Get PDF
    Dieser Aufsatz erörtert Möglichkeiten und Probleme der Förderung kommunikativer Fertigkeiten durch die UnterstĂŒtzung der Reflexion eigenen sprachrezeptiven Handelns und des Einsatzes von computerunterstĂŒtzten Lernumgebungen fĂŒr dessen Förderung. Kommunikationstrainings widmen sich meistens der Förderung des beobachtbaren sprachproduktiven Handelns (Sprechen). Die individuellen kognitiven Prozesse, die dem sprachrezeptiven Handeln (Hören und Verstehen) zugrunde liegen, werden hĂ€ufig vernachlĂ€ssigt. Dies wird dadurch begrĂŒndet, dass sprachrezeptives Handeln in einer kommunikativen Situation nur schwer zugĂ€nglich und die Förderung der individuellen Prozesse sprachrezeptiven Handelns sehr zeitaufwĂ€ndig ist. Das zentrale Lernprinzip - die Reflexion des eigenen sprachlich-kommunikativen Handelns - wird aus verschiedenen Perspektiven diskutiert. Vor dem Hintergrund der Reflexionsmodelle wird die computerunterstĂŒtzte Lernumgebung CaiMan© vorgestellt und beschrieben. Daran anschließend werden sieben Erfolgsfaktoren aus der empirischen Forschung zur Lernumgebung CaiMan© abgeleitet. Der Artikel endet mit der Vorstellung von zwei empirischen Studien, die Möglichkeiten der ReflexionsunterstĂŒtzung untersucheThis article discusses the training of communicative skills by fostering the reflection of speech-receptive action and the opportunities for using software for this purpose. Most frameworks for the training of communicative behavior focus on fostering the observable speech-productive action (i.e. speaking); the individual cognitive processes underlying speech-receptive action (hearing and understanding utterances) are often neglected. Computer-supported learning environments employed as cognitive tools can help to foster speech-receptive action. Seven success factors for the integration of software into the training of soft skills have been derived from empirical research. The computer-supported learning environment CaiMan© based on these ideas is presented. One central learning principle in this learning environment reflection of one's own action will be discussed from different perspectives. The article concludes with two empirical studies examining opportunities to foster reflecti

    Technology‐supported environments for learning through cognitive conflict

    Get PDF
    This paper examines ways in which the idea of cognitive conflict is used to facilitate learning, looking at the design and use of learning environments for this purpose. Drawing on previous work in science education and educational computing, three approaches to the design of learning environments utilizing cognitive conflict are introduced. These approaches are described as confrontational, guiding and explanatory, based on the level of the designer's concern with learners’ pre‐existing understanding, the extent of modification to the learner's conceptual structures intended by the designer, and the directness of steering the learner to the desired understanding. The examples used to illustrate the three approaches are taken from science education, specifically software for learning about Newtonian physics; it is contended however that the argument of the paper applies more broadly, to learning environments for many curriculum areas for school levels and in higher education

    Support of the collaborative inquiry learning process: influence of support on task and team regulation

    Get PDF
    Regulation of the learning process is an important condition for efficient and effective learning. In collaborative learning, students have to regulate their collaborative activities (team regulation) next to the regulation of their own learning process focused on the task at hand (task regulation). In this study, we investigate how support of collaborative inquiry learning can influence the use of regulative activities of students. Furthermore, we explore the possible relations between task regulation, team regulation and learning results. This study involves tenth-grade students who worked in pairs in a collaborative inquiry learning environment that was based on a computer simulation, Collisions, developed in the program SimQuest. Students of the same team worked on two different computers and communicated through chat. Chat logs of students from three different conditions are compared. Students in the first condition did not receive any support at all (Control condition). In the second condition, students received an instruction in effective communication, the RIDE rules (RIDE condition). In the third condition, students were, in addition to receiving the RIDE rules instruction, supported by the Collaborative Hypothesis Tool (CHT), which helped the students with formulating hypotheses together (CHT condition). The results show that students overall used more team regulation than task regulation. In the RIDE condition and the CHT condition, students regulated their team activities most often. Moreover, in the CHT condition the regulation of team activities was positively related to the learning results. We can conclude that different measures of support can enhance the use of team regulative activities, which in turn can lead to better learning results

    Development Of Metacognitive And Discursive Activities In Indonesian Maths Teaching A theory based analysis of communication processes

    Get PDF
    We report on a German-Indonesian feasibility study which aims to significantly increase the mathematical skills of Indonesian secondary school students. For this study a learning environment for basic secondary school mathematics in class seven has been developed. It focuses on fostering cognitive, metacognitive and discursive activities. For the effectiveness of the new instructional concept it is necessary that those activities are an important feature of the teaching and learning culture in the classroom instruction. In this paper we present the theoretical framework for the new approach to teaching and learning. We use two transcript-based examples to exemplify and explain the observable features of this classroom culture und to formulate consequences for the following instruction development. Keywords: classroom culture, metacognition, discursivity, cognitive activatio

    Learning relationships from theory to design

    Get PDF
    This paper attempts to bridge the psychological and anthropological views of situated learning by focusing on the concept of a learning relationship, and by exploiting this concept in our framework for the design of learning technology. We employ Wenger's (1998) concept of communities of practice to give emphasis to social identification as a central aspect of learning, which should crucially influence our thinking about the design of learning environments. We describe learning relationships in terms of form (one‐to‐one, one‐to‐many etc.), nature (explorative, formative and comparative), distance (first‐, second‐order), and context, and we describe a first attempt at an empirical approach to their identification and measurement

    On Fodor on Darwin on Evolution

    Get PDF
    Jerry Fodor argues that Darwin was wrong about "natural selection" because (1) it is only a tautology rather than a scientific law that can support counterfactuals ("If X had happened, Y would have happened") and because (2) only minds can select. Hence Darwin's analogy with "artificial selection" by animal breeders was misleading and evolutionary explanation is nothing but post-hoc historical narrative. I argue that Darwin was right on all counts. Until Darwin's "tautology," it had been believed that either (a) God had created all organisms as they are, or (b) organisms had always been as they are. Darwin revealed instead that (c) organisms have heritable traits that evolved across time through random variation, with survival and reproduction in (changing) environments determining (mindlessly) which variants were successfully transmitted to the next generation. This not only provided the (true) alternative (c), but also the methodology for investigating which traits had been adaptive, how and why; it also led to the discovery of the genetic mechanism of the encoding, variation and evolution of heritable traits. Fodor also draws erroneous conclusions from the analogy between Darwinian evolution and Skinnerian reinforcement learning. Fodor’s skepticism about both evolution and learning may be motivated by an overgeneralization of Chomsky’s “poverty of the stimulus argument” -- from the origin of Universal Grammar (UG) to the origin of the “concepts” underlying word meaning, which, Fodor thinks, must be “endogenous,” rather than evolved or learned
    • 

    corecore