3,107 research outputs found

    Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare

    Get PDF
    Precision Medicine implies a deep understanding of inter-individual differences in health and disease that are due to genetic and environmental factors. To acquire such understanding there is a need for the implementation of different types of technologies based on artificial intelligence (AI) that enable the identification of biomedically relevant patterns, facilitating progress towards individually tailored preventative and therapeutic interventions. Despite the significant scientific advances achieved so far, most of the currently used biomedical AI technologies do not account for bias detection. Furthermore, the design of the majority of algorithms ignore the sex and gender dimension and its contribution to health and disease differences among individuals. Failure in accounting for these differences will generate sub-optimal results and produce mistakes as well as discriminatory outcomes. In this review we examine the current sex and gender gaps in a subset of biomedical technologies used in relation to Precision Medicine. In addition, we provide recommendations to optimize their utilization to improve the global health and disease landscape and decrease inequalities.This work is written on behalf of the Women’s Brain Project (WBP) (www.womensbrainproject.com/), an international organization advocating for women’s brain and mental health through scientific research, debate and public engagement. The authors would like to gratefully acknowledge Maria Teresa Ferretti and Nicoletta Iacobacci (WBP) for the scientific advice and insightful discussions; Roberto Confalonieri (Alpha Health) for reviewing the manuscript; the Bioinfo4Women programme of Barcelona Supercomputing Center (BSC) for the support. This work has been supported by the Spanish Government (SEV 2015–0493) and grant PT17/0009/0001, of the Acción Estratégica en Salud 2013–2016 of the Programa Estatal de Investigación Orientada a los Retos de la Sociedad, funded by the Instituto de Salud Carlos III (ISCIII) and European Regional Development Fund (ERDF). EG has received funding from the Innovative Medicines Initiative 2 (IMI2) Joint Undertaking under grant agreement No 116030 (TransQST), which is supported by the European Union’s Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Associations (EFPIA).Peer ReviewedPostprint (published version

    Clinical prediction modelling in oral health: A review of study quality and empirical examples of model development

    Get PDF
    Background Substantial efforts have been made to improve the reproducibility and reliability of scientific findings in health research. These efforts include the development of guidelines for the design, conduct and reporting of preclinical studies (ARRIVE), clinical trials (ROBINS-I, CONSORT), observational studies (STROBE), and systematic reviews and meta-analyses (PRISMA). In recent years, the use of prediction modelling has increased in the health sciences. Clinical prediction models use information at the individual patient level to estimate the probability of a health outcome(s). Such models offer the potential to assist in clinical decision-making and to improve medical care. Guidelines such as PROBAST (Prediction model Risk Of Bias Assessment Tool) have been recently published to further inform the conduct of prediction modelling studies. Related guidelines for the reporting of these studies, such as TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis) instrument, have also been developed. Since the early 2000s, oral health prediction models have been used to predict the risk of various types of oral conditions, including dental caries, periodontal diseases and oral cancers. However, there is a lack of information on the methodological quality and reporting transparency of the published oral health prediction modelling studies. As a consequence, and due to the unknown quality and reliability of these studies, it remains unclear to what extent it is possible to generalise their findings and to replicate their derived models. Moreover, there remains a need to demonstrate the conduct of prediction modelling studies in oral health field following the contemporary guidelines. This doctoral project addresses these issues using two systematic reviews and two empirical analyses. This thesis is the first comprehensive and systematic project reviewing the study quality and demonstrating the use of registry data and longitudinal cohorts to develop clinical prediction models in oral health. Aims • To identify and examine the quality of existing prediction modelling studies in the major fields of oral health.• To demonstrate the conduct and reporting of a prediction modelling study following current guidelines, incorporating machine learning algorithms and accounting for multiple sources of biases. Methods As one of the most prevalent oral conditions, chronic periodontitis was chosen as the exemplar pathology for the first part of this thesis. A systematic review was conducted to investigate the existing prediction models for the incidence and progression of this condition. Based upon this initial overview, a more comprehensive critical review was conducted to assess the methodological quality and completeness of reporting for prediction modelling studies in the field of oral health. The risk of bias in the existing literature was assessed using the PROBAST criteria, and the quality of study reporting was measured in accordance with the TRIPOD guidelines. Following these two reviews, this research project demonstrated the conduct and reporting of a clinical prediction modelling study using two empirical examples. Two types of analyses that are commonly used for two different types of outcome data were adopted: survival analysis for censored outcomes and logistic regression analysis for binary outcomes. Models were developed to 1) predict the three- and five-year disease-specific survival of patients with oral and pharyngeal cancers, based on 21,154 cases collected by a large cancer registry program in the US, the Surveillance, Epidemiology and End Results (SEER) program, and 2) to predict the occurrence of acute and persistent pain following root canal treatment, based on the electronic dental records of 708 adult patients collected by the National Practice-Based Research Network. In these two case studies, all prediction models were developed in five steps: (i) framing the research question; (ii) data acquisition and pre-processing; (iii) model generation; (iv) model validation and performance evaluation; and (v) model presentation and reporting. In accordance with the PROBAST recommendations, the risk of bias during the modelling process was reduced in the following aspects: • In the first case study, three types of biases were taken into account: (i) bias due to missing data was reduced by adopting compatible methods to conduct imputation; (ii) bias due to unmeasured predictors was tested by sensitivity analysis; and (iii) bias due to the initial choice of modelling approach was addressed by comparing tree-based machine learning algorithms (survival tree, random survival forest and conditional inference forest) with the traditional statistical model (Cox regression). • In the second case study, the following strategies were employed: (i) missing data were addressed by multiple imputation with missing indicator methods; (ii) a multilevel logistic regression approach was adopted for model development in order to fit Table of Contents xi the hierarchical structure of the data; (iii) model complexity was reduced using the Least Absolute Shrinkage and Selection Operator (LASSO) for predictor selection; and (iv) the models’ predictive performance was evaluated comprehensively by using the Area Under the Precision Recall Curve (AUPRC) in addition to the Area Under the Receiver Operating Characteristic curve (AUROC); (v) finally, and most importantly, given the existing criticism in the research community concerning the gender-based and racial bias in risk prediction models, we compared the models’ predictive performance built with different sets of predictors (including a clinical set, a sociodemographic set and a combination of both, the ‘general’ set). Results The first and second review studies indicated that, in the field of oral health, the popularity of multivariable prediction models has increased in recent years. Bias and variance are two components of the uncertainty (e.g., the mean squared error) in model estimation. However, the majority of the existing studies did not account for various sources of bias, such as measurement error and inappropriate handling of missing data. Moreover, non-transparent reporting and lack of reproducibility of the models were also identified in the existing oral health prediction modelling studies. These findings provided motivation to conduct two case studies aimed at demonstrating adherence to the contemporary guidelines and to best practice. In the third study, comparable predictive capabilities between Cox regression and the non-parametric tree-based machine learning algorithms were observed for predicting the survival of patients with oral and pharyngeal cancers. For example, the C-index for a Cox model and a random survival forest in predicting three-year survival were 0.82 and 0.84, respectively. A novelty of this study was the development of an online calculator designed to provide an open and transparent estimation of patients’ survival probability for up to five years after diagnosis. This calculator has clinical translational potential and could aid in patient stratification and treatment planning, at least in the context of ongoing research. In addition, the transparent reporting of this study was achieved by following the TRIPOD checklist and sharing all data and codes. In the fourth study, LASSO regression suggested that pre-treatment clinical factors were important in the development of one-week and six-month postoperative pain following root canal treatment. Among all the developed multilevel logistic models, models with a clinical set of predictors yielded similar predictive performance to models with a general set of predictors, while the models with sociodemographic predictors showed the weakest predictive ability. For example, for predicting one-week postoperative pain, the AUROC for models with clinical, sociodemographic and general predictors were 0.82, 0.68 and 0,84, respectively, and the AUPRC were 0.66, 0.40 and 0.72, respectively. Conclusion The significance of this research project is twofold. First, prediction models have been developed for potential clinical use in the context of various oral conditions. Second, this research represents the first attempt to standardise the conduct of this type of studies in oral health research. This thesis presents three conclusions: 1) Adherence to contemporary best practice guidelines such as PROBAST and TRIPOD is limited in the field of oral health research. In response, this PhD project disseminates these guidelines and leverages their advantages to develop effective prediction models for use in dentistry and oral health. 2) Use of appropriate procedures, accounting for and adapting to multiple sources of bias in model development, produces predictive tools of increased reliability and accuracy that hold the potential to be implemented in clinical practice. Therefore, for future prediction modelling research, it is important that data analysts work towards eliminating bias, regardless of the areas in which the models are employed. 3) Machine learning algorithms provide alternatives to traditional statistical models for clinical prediction purposes. Additionally, in the presence of clinical factors, sociodemographic characteristics contribute less to the improvement of models’ predictive performance or to providing cogent explanations of the variance in the models, regardless of the modelling approach. Therefore, it is timely to reconsider the use of sociodemographic characteristics in clinical prediction modelling research. It is suggested that this is a proportionate and evidence based strategy aimed at reducing biases in healthcare risk prediction that may be derived from gender and racial characteristics inherent in sociodemographic data sets.Thesis (Ph.D.) -- University of Adelaide, School of Public Health, 202

    Predicting the epidemic: a study of diabetes risk profiling in a multi-ethnic inner city population

    Get PDF
    PhDType 2 diabetes has increased in prevalence globally in recent years, mainly due to obesity. Many other risk factors are well known. Identifying those at high risk of type 2 diabetes may guide targeted interventions aimed at reducing risk. Type 2 diabetes risk prediction is a complex science. The first half of this thesis presents a quantitative and qualitative systematic review of 145 risk prediction models and scores. Many are available; few are usable in real life clinical practice. Seven have high potential to be used with routine data (such as electronic primary care records). The second half of this thesis describes the use of one of the risk prediction scores locally, the QDScore, on a dataset of 519,288 electronic primary care records in East London, UK to calculate the ten year risk of developing type 2 diabetes. Ten percent of the population were at high risk (defined as a ten year risk of greater than 20%). Ethnicity and deprivation were key factors responsible for increasing risk, and there was overlap with cardiovascular morbidity. A sub-section of these data were mapped to explore the feasibility of using geospatial mapping to convey the risk of non-communicable disease in a public health setting. Previous research has focussed on targeting individuals with pre-diabetes (e.g. Impaired Fasting Glucose) and screening for undiagnosed diabetes. Going a step further back and identifying those at risk of type 2 diabetes is theoretically possible due to the wide availability of prediction algorithms, and such an approach is potentially achievable locally using electronic primary care records. This produces important descriptive data 3 to aid the interventions of general practitioners, public health specialists and urban planners. Future research should focus on interventions which reduce risk of type 2 diabetes in otherwise healthy adults

    Utilizing Temporal Information in The EHR for Developing a Novel Continuous Prediction Model

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a nation-wide prevalent chronic condition, which includes direct and indirect healthcare costs. T2DM, however, is a preventable chronic condition based on previous clinical research. Many prediction models were based on the risk factors identified by clinical trials. One of the major tasks of the T2DM prediction models is to estimate the risks for further testing by HbA1c or fasting plasma glucose to determine whether the patient has or does not have T2DM because nation-wide screening is not cost-effective. Those models had substantial limitations on data quality, such as missing values. In this dissertation, I tested the conventional models which were based on the most widely used risk factors to predict the possibility of developing T2DM. The AUC was an average of 0.5, which implies the conventional model cannot be used to screen for T2DM risks. Based on this result, I further implemented three types of temporal representations, including non-temporal representation, interval-temporal representation, and continuous-temporal representation for building the T2DM prediction model. According to the results, continuous-temporal representation had the best performance. Continuous-temporal representation was based on deep learning methods. The result implied that the deep learning method could overcome the data quality issue and could achieve better performance. This dissertation also contributes to a continuous risk output model based on the seq2seq model. This model can generate a monotonic increasing function for a given patient to predict the future probability of developing T2DM. The model is workable but still has many limitations to overcome. Finally, this dissertation demonstrates some risks factors which are underestimated and are worthy for further research to revise the current T2DM screening guideline. The results were still preliminary. I need to collaborate with an epidemiologist and other fields to verify the findings. In the future, the methods for building a T2DM prediction model can also be used for other prediction models of chronic conditions

    A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When?

    Full text link
    Artificial intelligence (AI) models are increasingly finding applications in the field of medicine. Concerns have been raised about the explainability of the decisions that are made by these AI models. In this article, we give a systematic analysis of explainable artificial intelligence (XAI), with a primary focus on models that are currently being used in the field of healthcare. The literature search is conducted following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) standards for relevant work published from 1 January 2012 to 02 February 2022. The review analyzes the prevailing trends in XAI and lays out the major directions in which research is headed. We investigate the why, how, and when of the uses of these XAI models and their implications. We present a comprehensive examination of XAI methodologies as well as an explanation of how a trustworthy AI can be derived from describing AI models for healthcare fields. The discussion of this work will contribute to the formalization of the XAI field.Comment: 15 pages, 3 figures, accepted for publication in the IEEE Transactions on Artificial Intelligenc

    Doctor of Philosophy

    Get PDF
    dissertationFamily health history (FHH) is an independent risk factor for predicting an individual's chance of developing selected chronic diseases. Though various FHH tools have been developed, many research questions remain to be addressed. Before FHH can be used as an effective risk assessment tool in public health screenings or population-based research, it is important to understand the quality of collected data and evaluate risk prediction models. No literature has been identified whereby risks are predicted by applying machine learning solely on FHH. This dissertation addressed several questions. First, using mixed methods, we defined 50 requirements for documenting FHH for a population-based study. Second, we examined the accuracy of self- and proxy-reported FHH data in the Health Family Tree database, by comparing the disease and risk factor rates generated from this database with rates recorded in a cancer registry and standard public health surveys. The rates generated from the Health Family Tree were statistically lower than those from public sources (exceptions: stroke rates were the same, exercise rates were higher). Third, we validated the Health Family Tree risk predictive algorithm. The very high risk (≥2) predicted the risk of all concerned diseases for adult population (20 ~ 99 years of age), and the predictability remained when using disease rates from public sources as the reference in the relative risk model. The referent population used to establish the expected rate of disease impacted risk classification: the lower expected disease rates generated by the Health Family Tree, in comparison to the rates from public iv sources, caused more persons to be classified at high risk. Finally, we constructed and evaluated new predictive models using three machine learning classifiers (logistic regression, Bayesian networks, and support vector machine). A limited set of information about first-degree relatives was used to predict future disease. In summary, combining FHH with valid risk algorithms provide a low cost tool for identifying persons at risk for common diseases. These findings may be especially useful when developing strategies to screen populations for common diseases and identifying those at highest risk for public health interventions or population-based research
    corecore