25 research outputs found

    Applied Ecology and Environmental Research 2020

    Get PDF

    Proceedings of Abstracts 10th International Conference on Air Quality Science and Application

    Get PDF
    This 10th International Conference in Air Quality - Science and Application is being held in the elegant and vibrant city of Milan, Italy. Our local hosts are ARIANET and ARPA Lombardia both of whom play a leading role in assessing and managing air pollution in the area. The meeting builds upon the series that began at the University of Hertfordshire, UK in July 1996. Subsequent meetings have been held at the Technical University of Madrid, Spain (1999), Loutraki, Greece (2001), Charles University, Prague, Czech Republic (2003), Valencia, Spain (2005), Cyprus (2007), Istanbul, Turkey (2009) Athens, Greece (2012) and Garmisch-Partenkirchen, Germany (2014). Over the last two decades controls to limit air pollution have increased but the problem of poor air quality persists in all cities of the world. Consequently, the issue of the quality of air that we breathe remains at the forefront of societal concerns and continues to demand the attention of scientists and policy makers to reduce health impacts and to achieve sustainable development. Although urbanisation is growing in terms of population, transport, energy consumption and utilities, science has shown that impact from air pollution in cities is not restricted to local scales but depends on contributions from regional and global scales including interactions with climate change. Despite improvements in technology, users still demand robust management and assessment tools to formulate effective control policies and strategies for reducing the health impact of air pollution. The topics of papers presented at the conference reflect the diversity of scales, processes and interactions affecting air pollution and its impact on health and the environment. As usual, the conference is stimulating cross-fertilisation of ideas and cooperation between the different air pollution science and user communities. In particular, there is greater involvement of city, regional and global air pollution, climate change, users and health communities at the meeting. This international conference brings together scientists, users and policy makers from across the globe to discuss the latest scientific advances in our understanding of air pollution and its impacts on our health and environment. In addition to the scientific advances, the conference will also seek to highlight applications and developments in management strategies and assessment tools for policy and decision makers. This volume presents a collection of abstracts of papers presented at the Conference. The main themes covered in the Conference include: Air quality and impact on regional to global scales Development/application/evaluation of air quality and related models Environmental and health impact resulting from air pollution Measurement of air pollutants and process studies Source apportionment and emission models/inventories Urban meteorology Special session: Air quality impacts of the increasing use of biomass fuels Special session: Air quality management for policy support and decisions Special session: Air pollution meteorology from local to global scales Special session: Climate change and human health Special Session: Modelling and measuring non-exhaust emissions from traffic Special session: Transport related air pollution - PM and its impact on cities and across EuropeFinal Published versio

    The Hindu Kush Himalaya Assessment

    Get PDF
    This open access volume is the first comprehensive assessment of the Hindu Kush Himalaya (HKH) region. It comprises important scientific research on the social, economic, and environmental pillars of sustainable mountain development and will serve as a basis for evidence-based decision-making to safeguard the environment and advance people’s well-being. The compiled content is based on the collective knowledge of over 300 leading researchers, experts and policymakers, brought together by the Hindu Kush Himalayan Monitoring and Assessment Programme (HIMAP) under the coordination of the International Centre for Integrated Mountain Development (ICIMOD). This assessment was conducted between 2013 and 2017 as the first of a series of monitoring and assessment reports, under the guidance of the HIMAP Steering Committee: Eklabya Sharma (ICIMOD), Atiq Raman (Bangladesh), Yuba Raj Khatiwada (Nepal), Linxiu Zhang (China), Surendra Pratap Singh (India), Tandong Yao (China) and David Molden (ICIMOD and Chair of the HIMAP SC). This First HKH Assessment Report consists of 16 chapters, which comprehensively assess the current state of knowledge of the HKH region, increase the understanding of various drivers of change and their impacts, address critical data gaps and develop a set of evidence-based and actionable policy solutions and recommendations. These are linked to nine mountain priorities for the mountains and people of the HKH consistent with the Sustainable Development Goals. This book is a must-read for policy makers, academics and students interested in this important region and an essentially important resource for contributors to global assessments such as the IPCC reports. ; Constitutes the first comprehensive assessment of the Hindu Kush Himalaya region, providing an authoritative overview of the region Assembles the collective knowledge of over 300 leading researchers, practitioners, experts, and policymakers Combines the current state of knowledge of the Hindu Kush Himalaya region in one volume Offers Open Access to a set of practically oriented policy recommendation

    Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century

    Get PDF
    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts

    Energy-pollution-socioeconomic assessment from production- and consumption-based accounting approach

    Get PDF
    Rapid urbanization and industrialization in developing countries have stimulated energy consumption and resulted in environmental degradation. One of the global challenges today is to sustain socioeconomic development under the constraints of limited resources and without compromise in environmental wellness, climate resilience or function. Sustainable production and consumption is a promising way out of this grand challenge. A fundamental shift towards sustainable production and consumption patterns relies on a detailed characterization of material and emission flows between producers, consumers and environmental receptors. Such information, however, is greatly lacking in developing countries for both national and subnational levels. This study presents an integrated assessment of the interlinkages between energy, pollution and socioeconomic demands in China and its provinces with the thread of production- and consumption-based emissions. The double-digit growth of China’s economy before 2011 and its slow-down in the “new normal” period since then, rapid urbanization and rise of middle income class, and recession in export growth have resulted in dramatic changes in socioeconomic dimensions. It is important to understand how the socioeconomic drivers have evolved and fuelled the energy consumption and air pollution formation. Production- and consumption-based accounting approaches provide two distinct yet complementary angles to understand the nexus of socioeconomic demands, energy and pollution. This study develops an integrated assessment framework to depict material and emission flows between producers, consumers and environmental receptors. A four-stage research framework is proposed. It starts from the compilation of a primary energy consumption matrix, followed by the establishment of production-based inventories of greenhouse gases and air pollutants. Energy and emission accounts are then connected to socioeconomic accounts through environmentally-extended input-output (EEIO) analysis and decomposition techniques. Socioeconomic drivers that are responsible for energy consumption or emissions can be revealed, including entities such as intermediate sectors and final consumers and macroeconomic factors such as population growth, economic growth, industrial structure, energy intensity and energy mix. Meanwhile, production-based emissions marked by different socioeconomic drivers are fed into environmental modelling tools such as an air quality model. Through environmental models, a vast variety of environmental end-points can be evaluated, including but not limited to the ambient air pollutant concentration, air quality attainment rate, pollution formation regimes and death toll. With the corresponding relationship between production- and consumption-based emissions, socioeconomic demands and environmental consequences can be connected in an explicit and quantitative way. The proposed framework has been demonstrated at the provincial and national levels in China to advance the understanding of causes and effects of environmental issues in a socioeconomic context. Recognizing the central role of energy consumption in climate and air pollution problems, the production-based patterns of energy consumption in 30 provinces in China and their socioeconomic drivers are first investigated. Energy elasticity (the percentage change in energy consumption to achieve a 1% change in national GDP) in China have decreased continuously from 2003 to 2016. Starting at a level of 1.11 from 2003 to 2007, the energy elasticity dropped to 0.58 from 2007 to 2011, followed by an even lower value of 0.42 from 2011 to 2016. The reduction in the growth of energy consumption is even more prominent at the provincial level. Eight of the provinces saw declines in their total primary consumption from 2011 to 2016. They differed from their counterparts since 2011, when the decreasing effect of energy intensity was enhanced and, for the first time, surpassed or approximated the increasing effect of economic growth. The catching-up was more associated with the significant reduction of energy intensity rather than the slowdown of economic growth. New decreasing factors such as the share of coal and industrial structure change were also emerging to curb the growth. In addition, six provinces have levelled off their total primary consumption and decreased the combined consumption of coal and petroleum. Their driver mechanisms were similar but the share of cleaner fuels, e.g., natural gas and non-fossil fuels, increased significantly. Nevertheless, such declines were demonstrated to be initial rather than structural changes. To secure the trend or fasten transition, one path is to sustain the strong decreasing effect mainly from energy intensity, which is applicable to Hebei, Liaoning, Jilin, Henan, Hubei and Yunnan, whose energy intensities are still high (3.0~5.8 tce/104 $USD in 2016). The other path is to complement energy intensity with new decreasing drivers, which better suits the other provinces which have reached relatively low levels of energy intensity and have less potential for further reduction. Another two case studies at province levels are conducted. One is to investigate the demands behind air pollutant emissions in a fast developing region in China. Guangdong is a typical fast-developing region with annual GDP growth around 11% and China’s export industry hub. It is beset with air pollution problems featured by fine particulate matter (PM2.5) and ground-level ozone (O3). This study reveals that the varying trends of air pollutants from 2007 to 2012 were associated with production-based control measures and changes in economic structure and trading patterns. From the consumption perspective, due to the stringent control of SO2 in power plants and key industries, SO2 emissions saw substantial declines, while the less controlled PM10, PM2.5, non-methane volatile organic compounds (NMVOCs) and CO emissions continued to grow. The contributions of the cleaner service sectors to all seven pollutants increased. This increase could be a consequence of the expansion of the service sector, which grew by 41% in terms of its contributions to Guangdong’s GDP in 5 years. Meanwhile, exports accounted for more than 50% of the emissions, but their share had started to decrease for most pollutants except NMVOCs and CO. It suggests that Guangdong is moving towards a cleaner production and consumption pathway. The transformation of the industrial structure and increase in urban demand should help to further reduce emissions while maintaining economic development. The other case study focuses on CO2 emission in a less developed region in China. The production- and consumption-based characteristics of Tibet's CO2 emissions and its linkages with other regions in China are studied. Results show that the consumption-based CO2 emissions in Tibet (18.8 Mt, similar to Guinea's emissions in 2015) were three times as high as the production-based estimate (6.2 Mt). Tibet displays unique emission patterns with the highest ratio of consumption- to production-based emissions in China, which are more similar with the east developed provinces rather than its counterparts in west China. More than half of Tibet's consumption-based emissions are supported by Qinghai, Hebei, Sichuan, and others, enabled by the Qinghai-Tibet railway that connected Tibet to China's national railway system. High carbon footprint but low life expectancy is found in Tibet, suggesting the emerging need of a more sustainable consumption pathway under the intensifying interregional connections by Belt and Road Initiative. This study also presents a national study on the nexus of demand-emission-pollution-health. While China has made enormous progress in combatting PM2.5 pollution, its O3 exposure metrics increased by more than 50% from 2013 to 2017. This study investigates the socioeconomic drivers behind the O3 precursor emissions (NMVOCs, NOx and CO) and their effects on O3 formation chemistry, ambient O3 level and mortality. As the world’s factory, goods produced in China for foreign markets lead to an increase of domestic non-methane volatile organic compounds (NMVOCs) emissions by 3.5 million tons in 2013; about 13% of the national total or, equivalent to half of emissions from European Union (EU). Export demand driven emissions have mixed impacts on China’s ozone (O3) formation, but they generally contribute about 6~15% of peak O3 levels (6~10 μg/m3) caused by human activities in the coastal area resulting in an estimated 4615 (1514 ~ 7600) premature deaths. By benchmarking emission intensity in China to EU, the export footprint and NMVOCs emissions from the whole production capacity can be reduced by nearly 60% at moderate costs (at an annualized cost equivalent to 0.05% to 0.30% of industrial output). Such efforts will slow down the upward trend of O3 with notable health benefits. For a substantial attenuation of O3 pollution in China, however, concerted actions addressing domestic demands from urban and rural household are in great need. This PhD study presents an integrated assessment framework and captures how socioeconomic demands in China evolved and acted as driving forces of national and regional energy consumption, air pollutant emissions and pollution formation. In addition to end-of-pipe treatments, the roots of environmental problems need to be understood in socioeconomic context. The booming socioeconomic demands are responsible for the rise of energy consumption and poor air quality, but China as a whole and some of its more developed regions have been under a crucial transition towards sustainable production and consumption while maintaining the prosperity of individual and society. Experiences in China can be mirrored to other developing countries to foster sustainable production and consumption patterns

    Meeting Future Energy Needs in the Hindu Kush Himalaya

    Get PDF
    As mentioned in earlier chapters, the HKH regions form the entirety of some countries, a major part of other countries, and a small percentage of yet others. Because of this, when we speak about meeting the energy needs of the HKH region we need to be clear that we are not necessarily talking about the countries that host the HKH, but the clearly delineated mountainous regions that form the HKH within these countries. It then immediately becomes clear that energy provisioning has to be done in a mountain context characterized by low densities of population, low incomes, dispersed populations, grossly underdeveloped markets, low capabilities, and poor economies of scale. In other words, the energy policies and strategies for the HKH region have to be specific to these mountain contexts

    Northern Eurasia Future Initiative (NEFI): Facing the Challenges and Pathways of Global Change in the Twenty-first Century

    Get PDF
    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies codesigned with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    corecore