70 research outputs found

    In situ underwater microwave oil spill and oil slick thickness sensor

    Get PDF
    Nearly 30 percent of oil drilled globally is done offshore. Oil spillage offshore have far-reaching consequences on the environment, aquatic lives, and livelihoods as it was evident in the numerous accidents such as the Deepwater Horizon and Bonga oil spillages. Apart from detecting oil spillages, the determination of the oil slick thickness is very important. This is to enable the estimation of the volume and spread of oil discharged in oceans, seas and lakes. This information could guide the oil spill countermeasures and provide the basis for legal actions against the defaulting parties. The viability of the use of radar in the detection of oil spill has already been established by airborne and space borne synthetic aperture radar (SAR). Notwithstanding, the high latency associated with SARs and its susceptibility of false positive and false negative detection of oil slick makes it vulnerable. It has also not been very successful in the determination of oil slick thickness. In situ methods such as the capacitive, conductive and optical based approaches have been used to detect as well as determine oil slick thickness. Some of these contact-based approaches are susceptible to corrosion, fouling and require several calibrations. Radio frequency (RF) signals in seawater suffer from attenuation and dispersion due to the high conductivity of the medium. Antennas, ideally matched to free space, suffer impedance mismatches when immersed in seawater. In this thesis, we proposed the novel approach of using microwave techniques to detect oil spillage and determine oil slick thickness based on a contact-based in situ approach. The work began by undertaking an investigation into the properties of the North Sea water which was used as the primary transmission medium for the study. Subsequently, the research developed an ultrawideband antenna that radiated underwater, which was encapsulated in polydimethylsiloxane (PDMS). The antenna-sensor with a Faraday cage was used to develop a novel microwave oil spill sensor. A communication backbone was designed for the sensor using long range (LoRa) 868 MHz frequency based on a bespoke braid antenna buffered by oil impregnated papers to ameliorate against the influence of the seawater surface. Using a four layered RF switch controller and an antenna array consisting of four antenna-sensors, a novel microwave oil slick thickness sensor was developed. The antenna-sensors were arranged in a cuboid fashion with antenna-sensor 3 and antenna-sensor 4 capable of detecting oil slick thickness at 23 mm and 46 mm using their transmission coefficient (S43) of -10 dB and -19 dB compared to that of the pure seawater respectively. For the 69 mm and 92 mm thickness, the transmission coefficient (S21) of antenna-sensor 1 and antenna-sensor 2 was used to determine these thicknesses with values of -13.5 dB and -24.14 dB with respect to that of pure seawater

    Ice in Norwegian subarctic fjords and coastal regions: An examination of ice formation, properties, and trends based on remote sensing and in situ data

    Get PDF
    Larger fjords along the Norwegian coast are ice free all year due to the influence of warm Atlantic water, however, sea ice can form in the inner parts of fjords and in smaller fjord branches. While a wide breadth of work exists examining mainland Norwegian fjords often focused on water mass dynamics and their link to biological processes, little research has been conducted on specifically sea ice in these locations. The overarching goal of the work presented here is to address this gap in research and knowledge. To do so, first an assessment of ice extent in fjords and other coastal areas along the coast of mainland Norway from 2001 to 2019 between February through May is completed. Through the development of an automated method to estimate quantitatively ice extent in optical satellite imagery, variability in ice extent between years as well as within single seasons is highlighted for regions and specific fjords. An investigation into the factors potentially driving ice formation is conducted with focused placed on air temperature, snowfall, and rainfall plus snowmelt. Next, seven fjords located in northern Norway are studied in-depth through the collection of ice and ocean measurements over the course of three winter seasons spanning 2017 into 2020. Ice stratigraphy, bulk ice salinity and oxygen isotopic composition, ocean temperature, salinity and oxygen isotopic composition, and river isotopic composition are analyzed. Possible connections to temperature and snowfall are revisited in addition to river runoff illuminating further variations not only in ice extent between seasons but also ice properties and the factors driving ice formation. Lastly, bulk ice salinity and oxygen isotopic composition are given a closer look through the inversion of previously derived, separate, relationships of each to growth rate and interface water composition. Results provide a promising method to deduce ocean and weather conditions during ice growth in fjords and coastal areas where continuous measurement through winter is not possible

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    Earth Resources: A continuing bibliography with indexes, issue 17

    Get PDF
    This bibliography lists 775 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1978. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth resources: A continuing bibliography with indexes (issue 58)

    Get PDF
    This bibliography lists 500 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    THE USE OF MARINE RADAR FOR INTERTIDAL AREA SURVEY AND MONITORING COASTAL MORPHOLOGICAL CHANGE

    Get PDF
    Surveying and monitoring the dynamic morphology of intertidal areas is a logistically challenging and expensive task, due to their large area and complications associated with access. This thesis describes a contribution to the nearshore survey industry; an innovative methodology is developed and subsequently applied to marine radar image data in order to map topography within the intertidal area. This new method of intertidal topographical mapping has a reasonable spatial resolution (5 m) and operates over a large radial range (~4 km) with the required temporal resolution to observe both event-based and long-term morphological change (currently bi-weekly surveys). This study uses nearly three years of radar image data collected during 2006-2009 from an installation on Hilbre Island at the mouth of the Dee estuary, northwest UK. The development of the novel 'radar waterline method' builds on previous waterline techniques and improves upon them by moving the analysis from the spatial to the temporal domain, making the analysis extremely robust and more resilient to poor quality image data. Results from radar topographical surveys are compared to those of a LiDAR survey during October 2006. The differences compare favourably across large areas of the intertidal zone, within the first kilometre 97% of radar-derived elevations lie within 1 m of LiDAR estimations. Concentrations of poor estimations are seen in areas that are shown to be shadowed from the radar antenna or suffering from pooling water during the ebb tide. The full three-year dataset is used to analyse changing intertidal morphology over that time period using radar-derived surveys generated every two weeks. These surveys are used to perform an analysis of changing sediment volume and mean elevation, giving an indication of beach 'health' and revealing a seasonal trend of erosion and accretion at several sites across the Dee estuary. The ability of the developed technique to resolve morphological changes resulting from storm events is demonstrated and a quantification of that impact is provided. The application of the technique to long-range (7.5 km) marine radar data is demonstrated in an attempt to test the spatial and operational limitations of this new method. The development of a mobile radar survey platform, the Rapidar allows remote areas to be surveyed and provides a platform for potential integration with other survey instruments. A description of the potential application to coastal management and monitoring is presented. Areas of further work intended to improve vertical elevation accuracy and robustness are proposed. This contribution provides a useful tool for coastal scientists, engineers and decision-makers interested in the management of coastal areas that will form part of integrated coastal management and monitoring operations. This method presents several key advantages over traditional survey techniques including; the large area of operation and temporal resolution of repeat surveys, it is limited primarily by topographical shadowing and low wind conditions limiting data collection

    Remote Sensing of Earth Resources: A literature survey with indexes (1970 - 1973 supplement). Section 1: Abstracts

    Get PDF
    Abstracts of reports, articles, and other documents introduced into the NASA scientific and technical information system between March 1970 and December 1973 are presented in the following areas: agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore