1,400 research outputs found

    Examining the effects of Lighting Effects on Peripheral Devices for Visual User Notifications

    Get PDF
    The ubiquitous and pervasive use of lighting effects embedded into peripheral hardware has gained popularity through it’s use in Triple-A video game titles such as Call of Duty and the availability of software development kits (SDK) from leading manufacturers. A preliminary NASA TLX experiment was performed to examine the effect that notifications displayed on a peripheral device has, in comparison to traditional dialog notifications. This research will prove useful to create notification design guidance for these devices

    MoPeDT: A Modular Head-Mounted Display Toolkit to Conduct Peripheral Vision Research

    Full text link
    Peripheral vision plays a significant role in human perception and orientation. However, its relevance for human-computer interaction, especially head-mounted displays, has not been fully explored yet. In the past, a few specialized appliances were developed to display visual cues in the periphery, each designed for a single specific use case only. A multi-purpose headset to exclusively augment peripheral vision did not exist yet. We introduce MoPeDT: Modular Peripheral Display Toolkit, a freely available, flexible, reconfigurable, and extendable headset to conduct peripheral vision research. MoPeDT can be built with a 3D printer and off-the-shelf components. It features multiple spatially configurable near-eye display modules and full 3D tracking inside and outside the lab. With our system, researchers and designers may easily develop and prototype novel peripheral vision interaction and visualization techniques. We demonstrate the versatility of our headset with several possible applications for spatial awareness, balance, interaction, feedback, and notifications. We conducted a small study to evaluate the usability of the system. We found that participants were largely not irritated by the peripheral cues, but the headset's comfort could be further improved. We also evaluated our system based on established heuristics for human-computer interaction toolkits to show how MoPeDT adapts to changing requirements, lowers the entry barrier for peripheral vision research, and facilitates expressive power in the combination of modular building blocks.Comment: Accepted IEEE VR 2023 conference pape

    From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI

    Full text link
    This paper gives an overview of the ten-year devel- opment of the papers presented at the International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutoUI) from 2009 to 2018. We categorize the topics into two main groups, namely, manual driving-related research and automated driving-related re- search. Within manual driving, we mainly focus on studies on user interfaces (UIs), driver states, augmented reality and head-up displays, and methodology; Within automated driv- ing, we discuss topics, such as takeover, acceptance and trust, interacting with road users, UIs, and methodology. We also discuss the main challenges and future directions for AutoUI and offer a roadmap for the research in this area.https://deepblue.lib.umich.edu/bitstream/2027.42/153959/1/From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI.pdfDescription of From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI.pdf : Main articl

    Multimodal feedback for mid-air gestures when driving

    Get PDF
    Mid-air gestures in cars are being used by an increasing number of drivers on the road. Us-ability concerns mean good feedback is important, but a balance needs to be found between supporting interaction and reducing distraction in an already demanding environment. Visual feedback is most commonly used, but takes visual attention away from driving. This thesis investigates novel non-visual alternatives to support the driver during mid-air gesture interaction: Cutaneous Push, Peripheral Lights, and Ultrasound feedback. These modalities lack the expressive capabilities of high resolution screens, but are intended to allow drivers to focus on the driving task. A new form of haptic feedback — Cutaneous Push — was defined. Six solenoids were embedded along the rim of the steering wheel, creating three bumps under each palm. Studies 1, 2, and 3 investigated the efficacy of novel static and dynamic Cutaneous Push patterns, and their impact on driving performance. In simulated driving studies, the cutaneous patterns were tested. The results showed pattern identification rates of up to 81.3% for static patterns and 73.5% for dynamic patterns and 100% recognition of directional cues. Cutaneous Push notifications did not impact driving behaviour nor workload and showed very high user acceptance. Cutaneous Push patterns have the potential to make driving safer by providing non-visual and instantaneous messages, for example to indicate an approaching cyclist or obstacle. Studies 4 & 5 looked at novel uni- and bimodal feedback combinations of Visual, Auditory, Cutaneous Push, and Peripheral Lights for mid-air gestures and found that non-visual feedback modalities, especially when combined bimodally, offered just as much support for interaction without negatively affecting driving performance, visual attention and cognitive demand. These results provide compelling support for using non-visual feedback from in-car systems, supporting input whilst letting drivers focus on driving.Studies 6 & 7 investigated the above bimodal combinations as well as uni- and bimodal Ultrasound feedback during the Lane Change Task to assess the impact of gesturing and feedback modality on car control during more challenging driving. The results of study Seven suggests that Visual and Ultrasound feedback are not appropriate for in-car usage,unless combined multimodally. If Ultrasound is used unimodally it is more useful in a binary scenario.Findings from Studies 5, 6, and 7 suggest that multimodal feedback significantly reduces eyes-off-the-road time compared to Visual feedback without compromising driving performance or perceived user workload, thus it can potentially reduce crash risks. Novel design recommendations for providing feedback during mid-air gesture interaction in cars are provided, informed by the experiment findings

    Toward Data-Driven Digital Therapeutics Analytics: Literature Review and Research Directions

    Full text link
    With the advent of Digital Therapeutics (DTx), the development of software as a medical device (SaMD) for mobile and wearable devices has gained significant attention in recent years. Existing DTx evaluations, such as randomized clinical trials, mostly focus on verifying the effectiveness of DTx products. To acquire a deeper understanding of DTx engagement and behavioral adherence, beyond efficacy, a large amount of contextual and interaction data from mobile and wearable devices during field deployment would be required for analysis. In this work, the overall flow of the data-driven DTx analytics is reviewed to help researchers and practitioners to explore DTx datasets, to investigate contextual patterns associated with DTx usage, and to establish the (causal) relationship of DTx engagement and behavioral adherence. This review of the key components of data-driven analytics provides novel research directions in the analysis of mobile sensor and interaction datasets, which helps to iteratively improve the receptivity of existing DTx.Comment: This paper has been accepted by the IEEE/CAA Journal of Automatica Sinic

    Challenges in passenger use of mixed reality headsets in cars and other transportation

    Get PDF
    This paper examines key challenges in supporting passenger use of augmented and virtual reality headsets in transit. These headsets will allow passengers to break free from the restraints of physical displays placed in constrained environments such as cars, trains and planes. Moreover, they have the potential to allow passengers to make better use of their time by making travel more productive and enjoyable, supporting both privacy and immersion. However, there are significant barriers to headset usage by passengers in transit contexts. These barriers range from impediments that would entirely prevent safe usage and function (e.g. motion sickness) to those that might impair their adoption (e.g. social acceptability). We identify the key challenges that need to be overcome and discuss the necessary resolutions and research required to facilitate adoption and realize the potential advantages of using mixed reality headsets in transit
    • …
    corecore