1,102 research outputs found

    Structural Regularities in Text-based Entity Vector Spaces

    Get PDF
    Entity retrieval is the task of finding entities such as people or products in response to a query, based solely on the textual documents they are associated with. Recent semantic entity retrieval algorithms represent queries and experts in finite-dimensional vector spaces, where both are constructed from text sequences. We investigate entity vector spaces and the degree to which they capture structural regularities. Such vector spaces are constructed in an unsupervised manner without explicit information about structural aspects. For concreteness, we address these questions for a specific type of entity: experts in the context of expert finding. We discover how clusterings of experts correspond to committees in organizations, the ability of expert representations to encode the co-author graph, and the degree to which they encode academic rank. We compare latent, continuous representations created using methods based on distributional semantics (LSI), topic models (LDA) and neural networks (word2vec, doc2vec, SERT). Vector spaces created using neural methods, such as doc2vec and SERT, systematically perform better at clustering than LSI, LDA and word2vec. When it comes to encoding entity relations, SERT performs best.Comment: ICTIR2017. Proceedings of the 3rd ACM International Conference on the Theory of Information Retrieval. 201

    Comparative Analysis of Word Embeddings for Capturing Word Similarities

    Full text link
    Distributed language representation has become the most widely used technique for language representation in various natural language processing tasks. Most of the natural language processing models that are based on deep learning techniques use already pre-trained distributed word representations, commonly called word embeddings. Determining the most qualitative word embeddings is of crucial importance for such models. However, selecting the appropriate word embeddings is a perplexing task since the projected embedding space is not intuitive to humans. In this paper, we explore different approaches for creating distributed word representations. We perform an intrinsic evaluation of several state-of-the-art word embedding methods. Their performance on capturing word similarities is analysed with existing benchmark datasets for word pairs similarities. The research in this paper conducts a correlation analysis between ground truth word similarities and similarities obtained by different word embedding methods.Comment: Part of the 6th International Conference on Natural Language Processing (NATP 2020

    Language Transfer of Audio Word2Vec: Learning Audio Segment Representations without Target Language Data

    Full text link
    Audio Word2Vec offers vector representations of fixed dimensionality for variable-length audio segments using Sequence-to-sequence Autoencoder (SA). These vector representations are shown to describe the sequential phonetic structures of the audio segments to a good degree, with real world applications such as query-by-example Spoken Term Detection (STD). This paper examines the capability of language transfer of Audio Word2Vec. We train SA from one language (source language) and use it to extract the vector representation of the audio segments of another language (target language). We found that SA can still catch phonetic structure from the audio segments of the target language if the source and target languages are similar. In query-by-example STD, we obtain the vector representations from the SA learned from a large amount of source language data, and found them surpass the representations from naive encoder and SA directly learned from a small amount of target language data. The result shows that it is possible to learn Audio Word2Vec model from high-resource languages and use it on low-resource languages. This further expands the usability of Audio Word2Vec.Comment: arXiv admin note: text overlap with arXiv:1603.0098
    • …
    corecore