100 research outputs found

    Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology

    Get PDF
    Abstract Background In many protein-protein interaction (PPI) networks, densely connected hub proteins are more likely to be essential proteins. This is referred to as the "centrality-lethality rule", which indicates that the topological placement of a protein in PPI network is connected with its biological essentiality. Though such connections are observed in many PPI networks, the underlying topological properties for these connections are not yet clearly understood. Some suggested putative connections are the involvement of essential proteins in the maintenance of overall network connections, or that they play a role in essential protein clusters. In this work, we have attempted to examine the placement of essential proteins and the network topology from a different perspective by determining the correlation of protein essentiality and reverse nearest neighbor topology (RNN). Results The RNN topology is a weighted directed graph derived from PPI network, and it is a natural representation of the topological dependences between proteins within the PPI network. Similar to the original PPI network, we have observed that essential proteins tend to be hub proteins in RNN topology. Additionally, essential genes are enriched in clusters containing many hub proteins in RNN topology (RNN protein clusters). Based on these two properties of essential genes in RNN topology, we have proposed a new measure; the RNN cluster centrality. Results from a variety of PPI networks demonstrate that RNN cluster centrality outperforms other centrality measures with regard to the proportion of selected proteins that are essential proteins. We also investigated the biological importance of RNN clusters. Conclusions This study reveals that RNN cluster centrality provides the best correlation of protein essentiality and placement of proteins in PPI network. Additionally, merged RNN clusters were found to be topologically important in that essential proteins are significantly enriched in RNN clusters, and biologically important because they play an important role in many Gene Ontology (GO) processes.http://deepblue.lib.umich.edu/bitstream/2027.42/78257/1/1471-2105-11-505.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78257/2/1471-2105-11-505-S1.DOChttp://deepblue.lib.umich.edu/bitstream/2027.42/78257/3/1471-2105-11-505.pdfPeer Reviewe

    Complex-based analysis of dysregulated cellular processes in cancer

    Full text link
    Background: Differential expression analysis of (individual) genes is often used to study their roles in diseases. However, diseases such as cancer are a result of the combined effect of multiple genes. Gene products such as proteins seldom act in isolation, but instead constitute stable multi-protein complexes performing dedicated functions. Therefore, complexes aggregate the effect of individual genes (proteins) and can be used to gain a better understanding of cancer mechanisms. Here, we observe that complexes show considerable changes in their expression, in turn directed by the concerted action of transcription factors (TFs), across cancer conditions. We seek to gain novel insights into cancer mechanisms through a systematic analysis of complexes and their transcriptional regulation. Results: We integrated large-scale protein-interaction (PPI) and gene-expression datasets to identify complexes that exhibit significant changes in their expression across different conditions in cancer. We devised a log-linear model to relate these changes to the differential regulation of complexes by TFs. The application of our model on two case studies involving pancreatic and familial breast tumour conditions revealed: (i) complexes in core cellular processes, especially those responsible for maintaining genome stability and cell proliferation (e.g. DNA damage repair and cell cycle) show considerable changes in expression; (ii) these changes include decrease and countering increase for different sets of complexes indicative of compensatory mechanisms coming into play in tumours; and (iii) TFs work in cooperative and counteractive ways to regulate these mechanisms. Such aberrant complexes and their regulating TFs play vital roles in the initiation and progression of cancer.Comment: 22 pages, BMC Systems Biolog

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value.</p> <p>Results</p> <p>In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of <it>Saccharomyces cerevisiae</it>. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC), Subgraph Centrality (SC), Eigenvector Centrality (EC), Information Centrality (IC), Bottle Neck (BN), Density of Maximum Neighborhood Component (DMNC), Local Average Connectivity-based method (LAC), Sum of ECC (SoECC), Range-Limited Centrality (RL), L-index (LI), Leader Rank (LR), Normalized <it>α</it>-Centrality (NC), and Moduland-Centrality (MC). Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN) is more than 50% when predicting no more than 500 proteins.</p> <p>Conclusions</p> <p>We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.</p

    A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize

    Get PDF
    Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM) is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs) that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize

    Innovative Algorithms and Evaluation Methods for Biological Motif Finding

    Get PDF
    Biological motifs are defined as overly recurring sub-patterns in biological systems. Sequence motifs and network motifs are the examples of biological motifs. Due to the wide range of applications, many algorithms and computational tools have been developed for efficient search for biological motifs. Therefore, there are more computationally derived motifs than experimentally validated motifs, and how to validate the biological significance of the ‘candidate motifs’ becomes an important question. Some of sequence motifs are verified by their structural similarities or their functional roles in DNA or protein sequences, and stored in databases. However, biological role of network motifs is still invalidated and currently no databases exist for this purpose. In this thesis, we focus not only on the computational efficiency but also on the biological meanings of the motifs. We provide an efficient way to incorporate biological information with clustering analysis methods: For example, a sparse nonnegative matrix factorization (SNMF) method is used with Chou-Fasman parameters for the protein motif finding. Biological network motifs are searched by various clustering algorithms with Gene ontology (GO) information. Experimental results show that the algorithms perform better than existing algorithms by producing a larger number of high-quality of biological motifs. In addition, we apply biological network motifs for the discovery of essential proteins. Essential proteins are defined as a minimum set of proteins which are vital for development to a fertile adult and in a cellular life in an organism. We design a new centrality algorithm with biological network motifs, named MCGO, and score proteins in a protein-protein interaction (PPI) network to find essential proteins. MCGO is also combined with other centrality measures to predict essential proteins using machine learning techniques. We have three contributions to the study of biological motifs through this thesis; 1) Clustering analysis is efficiently used in this work and biological information is easily integrated with the analysis; 2) We focus more on the biological meanings of motifs by adding biological knowledge in the algorithms and by suggesting biologically related evaluation methods. 3) Biological network motifs are successfully applied to a practical application of prediction of essential proteins

    Retention and integration of gene duplicates in eukaryotes

    Get PDF

    Integrative Systems Biology: Elucidating Complex Traits

    Get PDF
    corecore