3,523 research outputs found

    Pupil Position by an Improved Technique of YOLO Network for Eye Tracking Application

    Get PDF
    This Eye gaze following is the real-time collection of information about a person's eye movements and the direction of their look. Eye gaze trackers are devices that measure the locations of the pupils to detect and track changes in the direction of the user's gaze. There are numerous applications for analyzing eye movements, from psychological studies to human-computer interaction-based systems and interactive robotics controls. Real-time eye gaze monitoring requires an accurate and reliable iris center localization technique. Deep learning technology is used to construct a pupil tracking approach for wearable eye trackers in this study. This pupil tracking method uses deep-learning You Only Look Once (YOLO) model to accurately estimate and anticipate the pupil's central location under conditions of bright, natural light (visible to the naked eye). Testing pupil tracking performance with the upgraded YOLOv7 results in an accuracy rate of 98.50% and a precision rate close to 96.34% using PyTorch

    MScMS-II: an innovative IR-based indoor coordinate measuring system for large-scale metrology applications

    No full text
    According to the current great interest concerning large-scale metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance are assuming a more and more important role among system requirements. This paper describes the architecture and the working principles of a novel infrared (IR) optical-based system, designed to perform low-cost and easy indoor coordinate measurements of large-size objects. The system consists of a distributed network-based layout, whose modularity allows fitting differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load. The overall system functionalities, including distributed layout configuration, network self-calibration, 3D point localization, and measurement data elaboration, are discussed. A preliminary metrological characterization of system performance, based on experimental testing, is also presente

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Vision-based retargeting for endoscopic navigation

    Get PDF
    Endoscopy is a standard procedure for visualising the human gastrointestinal tract. With the advances in biophotonics, imaging techniques such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography can be combined with normal endoscopy for assisting the early diagnosis of diseases, such as cancer. In the past decade, optical biopsy has emerged to be an effective tool for tissue analysis, allowing in vivo and in situ assessment of pathological sites with real-time feature-enhanced microscopic images. However, the non-invasive nature of optical biopsy leads to an intra-examination retargeting problem, which is associated with the difficulty of re-localising a biopsied site consistently throughout the whole examination. In addition to intra-examination retargeting, retargeting of a pathological site is even more challenging across examinations, due to tissue deformation and changing tissue morphologies and appearances. The purpose of this thesis is to address both the intra- and inter-examination retargeting problems associated with optical biopsy. We propose a novel vision-based framework for intra-examination retargeting. The proposed framework is based on combining visual tracking and detection with online learning of the appearance of the biopsied site. Furthermore, a novel cascaded detection approach based on random forests and structured support vector machines is developed to achieve efficient retargeting. To cater for reliable inter-examination retargeting, the solution provided in this thesis is achieved by solving an image retrieval problem, for which an online scene association approach is proposed to summarise an endoscopic video collected in the first examination into distinctive scenes. A hashing-based approach is then used to learn the intrinsic representations of these scenes, such that retargeting can be achieved in subsequent examinations by retrieving the relevant images using the learnt representations. For performance evaluation of the proposed frameworks, extensive phantom, ex vivo and in vivo experiments have been conducted, with results demonstrating the robustness and potential clinical values of the methods proposed.Open Acces

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application

    Self scale estimation of the tracking window merged with adaptive particle filter tracker

    Get PDF
    Tracking a mobile object is one of the important topics in pattern recognition, but style has some obstacles. A Reliable tracking system must adjust their tracking windows in real time according to appearance changes of the tracked object. Furthermore, it has to deal with many challenges when one or multiple objects need to be tracked, for instance when the target is partially or fully occluded, background clutter, or even some target region is blurred. In this paper, we will present a novel approach for a single object tracking that combines particle filter algorithm and kernel distribution that update its tracking window according to object scale changes, whose name is multi-scale adaptive particle filter tracker. We will demonstrate that the use of particle filter combined with kernel distribution inside the resampling process will provide more accurate object localization within a research area. Furthermore, its average error for target localization was significantly lower than 21.37 pixels as the mean value. We have conducted several experiments on real video sequences and compared acquired results to other existing state of the art trackers to demonstrate the effectiveness of the multi-scale adaptive particle filter tracker
    • …
    corecore