1,795 research outputs found

    Exactly Sparse Extended Information Filters for Feature-Based SLAM

    Full text link
    Recent research concerning the Gaussian canonical form for Simultaneous Localization and Mapping (SLAM) has given rise to a handful of algorithms that attempt to solve the SLAM scalability problem for arbitrarily large environments. One such estimator that has received due attention is the Sparse Extended Information Filter (SEIF) proposed by Thrun et al., which is reported to be nearly constant time, irrespective of the size of the map. The key to the SEIF's scalability is to prune weak links in what is a dense information (inverse covariance) matrix to achieve a sparse approximation that allows for efficient, scalable SLAM. We demonstrate that the SEIF sparsification strategy yields error estimates that are overconfident when expressed in the global reference frame, while empirical results show that relative map consistency is maintained. In this paper, we propose an alternative scalable estimator based on an information form that maintains sparsity while preserving consistency. The paper describes a method for controlling the population of the information matrix, whereby we track a modified version of the SLAM posterior, essentially by ignoring a small fraction of temporal measurements. In this manner, the Exactly Sparse Extended Information Filter (ESEIF) performs inference over a model that is conservative relative to the standard Gaussian distribution. We compare our algorithm to the SEIF and standard EKF both in simulation as well as on two nonlinear datasets. The results convincingly show that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the EKF.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86031/1/mwalter-22.pd

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Exactly Sparse Delayed-State Filters for View-Based SLAM

    Get PDF
    This paper reports the novel insight that the simultaneous localization and mapping (SLAM) information matrix is exactly sparse in a delayed-state framework. Such a framework is used in view-based representations of the environment that rely upon scan-matching raw sensor data to obtain virtual observations of robot motion with respect to a place it has previously been. The exact sparseness of the delayed-state information matrix is in contrast to other recent feature-based SLAM information algorithms, such as sparse extended information filter or thin junction-tree filter, since these methods have to make approximations in order to force the feature-based SLAM information matrix to be sparse. The benefit of the exact sparsity of the delayed-state framework is that it allows one to take advantage of the information space parameterization without incurring any sparse approximation error. Therefore, it can produce equivalent results to the full-covariance solution. The approach is validated experimentally using monocular imagery for two datasets: a test-tank experiment with ground truth, and a remotely operated vehicle survey of the RMS Titanic.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86062/1/reustice-25.pd

    Sparse Extended Information Filters: Insights into Sparsification

    Full text link
    Recently, there have been a number of variant Simultaneous Localization and Mapping (SLAM) algorithms that have made substantial progress towards large-area scalability by parameterizing the SLAM posterior within the information (canonical/inverse covariance) form. Of these, probably the most well-known and popular approach is the Sparse Extended Information Filter (SEIF) by Thrun et al. While SEIFs have been successfully implemented with a variety of challenging real-world datasets and have led to new insights into scalable SLAM, open research questions remain regarding the approximate sparsification procedure and its effect on map error consistency. In this paper, we examine the constant-time SEIF sparsification procedure in depth and offer new insight into issues of consistency. In particular, we show that exaggerated map inconsistency occurs within the global reference frame where estimation is performed, but that empirical testing shows that relative local map relationships are preserved. We then present a slightly modified version of their sparsification procedure, which is shown to preserve sparsity while also generating both local and global map estimates comparable to those obtained by the non-sparsified SLAM filter. While this modified approximation is no longer constant-time, it does serve as a theoretical benchmark against which to compare SEIFs constant-time results. We demonstrate our findings by benchmark comparison of the modified and original SEIF sparsification rule using simulation in the linear Gaussian SLAM case and real-world experiments for a nonlinear dataset.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86045/1/reustice-31.pd

    Exact state and covariance sub-matrix recovery for submap based sparse EIF SLAM algorithm

    Full text link
    This paper provides a novel state vector and covariance sub-matrix recovery algorithm for a recently developed submap based exactly sparse Extended Information Filter (EIF) SLAM algorithm - Sparse Local Submap Joining Filter (SLSJF). The algorithm achieves exact recovery instead of approximate recovery. The recovery algorithm is very efficient because of an incremental Cholesky factorization approach and a natural reordering of the global state vector. Simulation results show that the computation cost of the SLSJF is much lower as compared with the sequential map joining algorithm using Extended Kalman Filter (EKF). The SLSJF with the proposed recovery algorithm is also successfully applied to the Victoria Park data set. ©2008 IEEE

    Tradeoffs in SLAM with sparse information filters

    Full text link
    Designing filters exploiting the sparseness of the information matrix for efficiently solving the simultaneous localization and mapping (SLAM) problem has attracted significant attention during the recent past. The main contribution of this paper is a review of the various sparse information filters proposed in the literature to date, in particular, the compromises used to achieve sparseness. Two of the most recent algorithms that the authors have implemented, Exactly Sparse Extended Information Filter (ESEIF) by Walter et al. [5] and the D-SLAM by Wang et al. [6] are discussed and analyzed in detail. It is proposed that this analysis can stimulate developing a framework suitable for evaluating the relative merits of SLAM algorithms. © 2008 Springer-Verlag Berlin Heidelberg

    Data-Efficient Decentralized Visual SLAM

    Full text link
    Decentralized visual simultaneous localization and mapping (SLAM) is a powerful tool for multi-robot applications in environments where absolute positioning systems are not available. Being visual, it relies on cameras, cheap, lightweight and versatile sensors, and being decentralized, it does not rely on communication to a central ground station. In this work, we integrate state-of-the-art decentralized SLAM components into a new, complete decentralized visual SLAM system. To allow for data association and co-optimization, existing decentralized visual SLAM systems regularly exchange the full map data between all robots, incurring large data transfers at a complexity that scales quadratically with the robot count. In contrast, our method performs efficient data association in two stages: in the first stage a compact full-image descriptor is deterministically sent to only one robot. In the second stage, which is only executed if the first stage succeeded, the data required for relative pose estimation is sent, again to only one robot. Thus, data association scales linearly with the robot count and uses highly compact place representations. For optimization, a state-of-the-art decentralized pose-graph optimization method is used. It exchanges a minimum amount of data which is linear with trajectory overlap. We characterize the resulting system and identify bottlenecks in its components. The system is evaluated on publicly available data and we provide open access to the code.Comment: 8 pages, submitted to ICRA 201

    D-SLAM: A decoupled solution to simultaneous localization and mapping

    Full text link
    The main contribution of this paper is the reformulation of the simultaneous localization and mapping (SLAM) problem for mobile robots such that the mapping and localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled SLAM). It is shown that SLAM with a range and bearing sensor in an environment populated with point features can be decoupled into solving a nonlinear static estimation problem for mapping and a low-dimensional dynamic estimation problem for localization. This is achieved by transforming the measurement vector into two parts: one containing information relating features in the map and another with information relating the map and robot. It is shown that the new formulation results in an exactly sparse information matrix for mapping when it is solved using an Extended Information Filter (EIF).Thus a significant saving in the computational effort can be achieved for large-scale problems by exploiting the special properties of sparse matrices. An important feature of D-SLAM is that the correlation among features in the map are still kept and it is demonstrated that the uncertainty of the feature estimates monotonically decreases. The algorithm is illustrated and evaluated through computer simulations and experiments. © 2007 SAGE Publications
    • …
    corecore