850 research outputs found

    Seven common errors in finding exact solutions of nonlinear differential equations

    Full text link
    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We show that many popular methods in finding of the exact solutions are equivalent each other. We demonstrate that some authors look for the solitary wave solutions of nonlinear ordinary differential equations and do not take into account the well - known general solutions of these equations. We illustrate several cases when authors present some functions for describing solutions but do not use arbitrary constants. As this fact takes place the redundant solutions of differential equations are found. A few examples of incorrect solutions by some authors are presented. Several other errors in finding the exact solutions of nonlinear differential equations are also discussed.Comment: 42 page

    Meromorphic solutions of nonlinear ordinary differential equations

    Full text link
    Exact solutions of some popular nonlinear ordinary differential equations are analyzed taking their Laurent series into account. Using the Laurent series for solutions of nonlinear ordinary differential equations we discuss the nature of many methods for finding exact solutions. We show that most of these methods are conceptually identical to one another and they allow us to have only the same solutions of nonlinear ordinary differential equations

    "Dispersion management" for solitons in a Korteweg-de Vries system

    Get PDF
    The existence of ``dispersion-managed solitons'', i.e., stable pulsating solitary-wave solutions to the nonlinear Schr\"{o}dinger equation with periodically modulated and sign-variable dispersion is now well known in nonlinear optics. Our purpose here is to investigate whether similar structures exist for other well-known nonlinear wave models. Hence, here we consider as a basic model the variable-coefficient Korteweg-de Vries equation; this has the form of a Korteweg-de Vries equation with a periodically varying third-order dispersion coefficient, that can take both positive and negative values. More generally, this model may be extended to include fifth-order dispersion. Such models may describe, for instance, periodically modulated waveguides for long gravity-capillary waves. We develop an analytical approximation for solitary waves in the weakly nonlinear case, from which it is possible to obtain a reduction to a relatively simple integral equation, which is readily solved numerically. Then, we describe some systematic direct simulations of the full equation, which use the soliton shape produced by the integral equation as an initial condition. These simulations reveal regions of stable and unstable pulsating solitary waves in the corresponding parametric space. Finally, we consider the effects of fifth-order dispersion.Comment: 19 pages, 7 figure
    • …
    corecore