2,452 research outputs found

    Exact score distribution computation for ontological similarity searches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semantic similarity searches in ontologies are an important component of many bioinformatic algorithms, e.g., finding functionally related proteins with the Gene Ontology or phenotypically similar diseases with the Human Phenotype Ontology (HPO). We have recently shown that the performance of semantic similarity searches can be improved by ranking results according to the probability of obtaining a given score at random rather than by the scores themselves. However, to date, there are no algorithms for computing the exact distribution of semantic similarity scores, which is necessary for computing the exact <it>P</it>-value of a given score.</p> <p>Results</p> <p>In this paper we consider the exact computation of score distributions for similarity searches in ontologies, and introduce a simple null hypothesis which can be used to compute a <it>P</it>-value for the statistical significance of similarity scores. We concentrate on measures based on Resnik's definition of ontological similarity. A new algorithm is proposed that collapses subgraphs of the ontology graph and thereby allows fast score distribution computation. The new algorithm is several orders of magnitude faster than the naive approach, as we demonstrate by computing score distributions for similarity searches in the HPO. It is shown that exact <it>P</it>-value calculation improves clinical diagnosis using the HPO compared to approaches based on sampling.</p> <p>Conclusions</p> <p>The new algorithm enables for the first time exact <it>P</it>-value calculation via exact score distribution computation for ontology similarity searches. The approach is applicable to any ontology for which the annotation-propagation rule holds and can improve any bioinformatic method that makes only use of the raw similarity scores. The algorithm was implemented in Java, supports any ontology in OBO format, and is available for non-commercial and academic usage under: <url>https://compbio.charite.de/svn/hpo/trunk/src/tools/significance/</url></p

    How ontology based information retrieval systems may benefit from lexical text analysis

    Get PDF
    International audienceThe exponential growth of available electronic data is almost useless without efficient tools to retrieve the right information at the right time. It is now widely acknowledged that information retrieval systems need to take semantics into account to enhance the use of available information. However, there is still a gap between the amounts of relevant information that can be accessed through optimized IRSs on the one hand, and users' ability to grasp and process a handful of relevant data at once on the other. This chapter shows how conceptual and lexical approaches may be jointly used to enrich document description. After a survey on semantic based methodologies designed to efficiently retrieve and exploit information, hybrid approaches are discussed. The original approach presented here benefits from both lexical and ontological document description, and combines them in a software architecture dedicated to information retrieval and rendering in specific domains

    Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

    Get PDF
    The research presented in this paper builds on previous work that lead to the definition of a family of semantic relatedness algorithms that compute a proximity given as input a pair of concept labels. The algorithms depends on a semantic graph, provided as RDF data, and on a particular set of weights assigned to the properties of RDF statements (types of arcs in the RDF graph). The current research objective is to automatically tune the weights for a given graph in order to increase the proximity quality. The quality of a semantic relatedness method is usually measured against a benchmark data set. The results produced by the method are compared with those on the benchmark using the Spearman\u27s rank coefficient. This methodology works the other way round and uses this coefficient to tune the proximity weights. The tuning process is controlled by a genetic algorithm using the Spearman\u27s rank coefficient as the fitness function. The genetic algorithm has its own set of parameters which also need to be tuned. Bootstrapping is based on a statistical method for generating samples that is used in this methodology to enable a large number of repetitions of the genetic algorithm, exploring the results of alternative parameter settings. This approach raises several technical challenges due to its computational complexity. This paper provides details on the techniques used to speedup this process. The proposed approach was validated with the WordNet 2.0 and the WordSim-353 data set. Several ranges of parameters values were tested and the obtained results are better than the state of the art methods for computing semantic relatedness using the WordNet 2.0, with the advantage of not requiring any domain knowledge of the ontological graph

    Term-Specific Eigenvector-Centrality in Multi-Relation Networks

    Get PDF
    Fuzzy matching and ranking are two information retrieval techniques widely used in web search. Their application to structured data, however, remains an open problem. This article investigates how eigenvector-centrality can be used for approximate matching in multi-relation graphs, that is, graphs where connections of many different types may exist. Based on an extension of the PageRank matrix, eigenvectors representing the distribution of a term after propagating term weights between related data items are computed. The result is an index which takes the document structure into account and can be used with standard document retrieval techniques. As the scheme takes the shape of an index transformation, all necessary calculations are performed during index tim

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    A new measure for functional similarity of gene products based on Gene Ontology

    Get PDF
    BACKGROUND: Gene Ontology (GO) is a standard vocabulary of functional terms and allows for coherent annotation of gene products. These annotations provide a basis for new methods that compare gene products regarding their molecular function and biological role. RESULTS: We present a new method for comparing sets of GO terms and for assessing the functional similarity of gene products. The method relies on two semantic similarity measures; sim(Rel )and funSim. One measure (sim(Rel)) is applied in the comparison of the biological processes found in different groups of organisms. The other measure (funSim) is used to find functionally related gene products within the same or between different genomes. Results indicate that the method, in addition to being in good agreement with established sequence similarity approaches, also provides a means for the identification of functionally related proteins independent of evolutionary relationships. The method is also applied to estimating functional similarity between all proteins in Saccharomyces cerevisiae and to visualizing the molecular function space of yeast in a map of the functional space. A similar approach is used to visualize the functional relationships between protein families. CONCLUSION: The approach enables the comparison of the underlying molecular biology of different taxonomic groups and provides a new comparative genomics tool identifying functionally related gene products independent of homology. The proposed map of the functional space provides a new global view on the functional relationships between gene products or protein families
    corecore