10,504 research outputs found

    Computing hypergeometric functions rigorously

    Get PDF
    We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1{}_0F_1, 1F1{}_1F_1, 2F1{}_2F_1 and 2F0{}_2F_0 (or the Kummer UU-function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software, and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq{}_pF_q and computation of high-order parameter derivatives.Comment: v2: corrected example in section 3.1; corrected timing data for case E-G in section 8.5 (table 6, figure 2); adjusted paper siz

    A computer algebra user interface manifesto

    Full text link
    Many computer algebra systems have more than 1000 built-in functions, making expertise difficult. Using mock dialog boxes, this article describes a proposed interactive general-purpose wizard for organizing optional transformations and allowing easy fine grain control over the form of the result even by amateurs. This wizard integrates ideas including: * flexible subexpression selection; * complete control over the ordering of variables and commutative operands, with well-chosen defaults; * interleaving the choice of successively less main variables with applicable function choices to provide detailed control without incurring a combinatorial number of applicable alternatives at any one level; * quick applicability tests to reduce the listing of inapplicable transformations; * using an organizing principle to order the alternatives in a helpful manner; * labeling quickly-computed alternatives in dialog boxes with a preview of their results, * using ellipsis elisions if necessary or helpful; * allowing the user to retreat from a sequence of choices to explore other branches of the tree of alternatives or to return quickly to branches already visited; * allowing the user to accumulate more than one of the alternative forms; * integrating direct manipulation into the wizard; and * supporting not only the usual input-result pair mode, but also the useful alternative derivational and in situ replacement modes in a unified window.Comment: 38 pages, 12 figures, to be published in Communications in Computer Algebr
    • …
    corecore