14,927 research outputs found

    Exact Robot Navigation Using Artificial Potential Functions

    Get PDF
    We present a new methodology for exact robot motion planning and control that unifies the purely kinematic path planning problem with the lower level feedback controller design. Complete information about the freespace and goal is encoded in the form of a special artificial potential function - a navigation function - that connects the kinematic planning problem with the dynamic execution problem in a provably correct fashion. The navigation function automatically gives rise to a bounded-torque feedback controller for the robot\u27s actuators that guarantees collision-free motion and convergence to the destination from almost all initial free configurations. Since navigation functions exist for any robot and obstacle course, our methodology is completely general in principle. However, this paper is mainly concerned with certain constructive techniques for a particular class of motion planning problems. Specifically, we present a formula for navigation functions that guide a point-mass robot in a generalized sphere world. The simplest member of this family is a space obtained by puncturing a disc by an arbitrary number of smaller disjoint discs representing obstacles. The other spaces are obtained from this model by a suitable coordinate transformation that we show how to build. Our constructions exploit these coordinate transformations to adapt a navigation function on the model space to its more geometrically complicated (but topologically equivalent) instances. The formula that we present admits sphere-worlds of arbitrary dimension and is directly applicable to configuration spaces whose forbidden regions can be modeled by such generalized discs. We have implemented these navigation functions on planar scenarios, and simulation results are provided throughout the paper

    Exact robot navigation using artificial potential functions

    Full text link

    Perseus: Randomized Point-based Value Iteration for POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agents belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems

    Optimal Navigation Functions for Nonlinear Stochastic Systems

    Full text link
    This paper presents a new methodology to craft navigation functions for nonlinear systems with stochastic uncertainty. The method relies on the transformation of the Hamilton-Jacobi-Bellman (HJB) equation into a linear partial differential equation. This approach allows for optimality criteria to be incorporated into the navigation function, and generalizes several existing results in navigation functions. It is shown that the HJB and that existing navigation functions in the literature sit on ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. In particular, it is shown that under certain criteria the optimal navigation function is related to Laplace's equation, previously used in the literature, through an exponential transform. Further, analytical solutions to the HJB are available in simplified domains, yielding guidance towards optimality for approximation schemes. Examples are used to illustrate the role that noise, and optimality can potentially play in navigation system design.Comment: Accepted to IROS 2014. 8 Page

    Vehicle Motion Planning Using Stream Functions

    Get PDF
    Borrowing a concept from hydrodynamic analysis, this paper presents stream functions which satisfy Laplace's equation as a local-minima free method for producing potential-field based navigation functions in two dimensions. These functions generate smoother paths (i.e. more suited to aircraft-like vehicles) than previous methods. A method is developed for constructing analytic stream functions to produce arbitrary vehicle behaviors while avoiding obstacles, and an exact solution for the case of a single uniformly moving obstacle is presented. The effects of introducing multiple obstacles are discussed and current work in this direction is detailed. Experimental results generated on the Cornell RoboFlag testbed are presented and discussed, as well as related work applying these methods to path planning for unmanned air vehicles

    Robot swarming applications

    Get PDF
    This paper discusses the different modes of operation of a swarm of robots: (i) non-communicative swarming, (ii) communicative swarming, (iii) networking, (iv) olfactory-based navigation and (v) assistive swarming. I briefly present the state of the art in swarming and outline the major techniques applied for each mode of operation and discuss the related problems and expected results
    • …
    corecore