4,732 research outputs found

    Compensated convexity, multiscale medial axis maps and sharp regularity of the squared-distance function

    Get PDF
    In this paper we introduce a new stable mathematical model for locating and measuring the medial axis of geometric objects, called the quadratic multiscale medial axis map of scale λ, and provide a sharp regularity result for the squared-distance function to any closed nonempty subset K of Rn. Our results exploit properties of the function Clλ (dist2(・; K)) obtained by applying the quadratic lower compensated convex transform of parameter λ [K. Zhang, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 25 (2008), pp. 743–771] to dist2(・; K), the Euclidean squared-distance function to K. Using a quantitative estimate for the tight approximation of dist2(・; K) by Clλ (dist2(・; K)), we prove the C1,1-regularity of dist2(・; K) outside a neighborhood of the closure of the medial axis MK of K, which can be viewed as a weak Lusin-type theorem for dist2(・; K), and give an asymptotic expansion formula for Clλ (dist2(・; K)) in terms of the scaled squared-distance transform to the set and to the convex hull of the set of points that realize the minimum distance to K. The multiscale medial axis map, denoted by Mλ(・; K), is a family of nonnegative functions, parametrized by λ > 0, whose limit as λ→∞exists and is called the multiscale medial axis landscape map, M∞(・; K). We show that M∞(・; K) is strictly positive on the medial axis MK and zero elsewhere. We give conditions that ensure Mλ(・; K) keeps a constant height along the parts of MK generated by two-point subsets with the value of the height dependent on the scale of the distance between the generating points, thus providing a hierarchy of heights (hence, the word “multiscale”) between different parts of MK that enables subsets of MK to be selected by simple thresholding. Asymptotically, further understanding of the multiscale effect is provided by our exact representation of M∞(・; K). Moreover, given a compact subset K of Rn, while it is well known that MK is not Hausdorff stable, we prove that in contrast, Mλ(・; K) is stable under the Hausdorff distance, and deduce implications for the localization of the stable parts of MK. Explicitly calculated prototype examples of medial axis maps are also presented and used to illustrate the theoretical findings

    Discrete euclidean skeletons in increased resolution

    Get PDF
    Orientadores: Roberto de Alencar Lotufo, Michel CouprieTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: A extração de esqueletos Euclidianos é uma tema de grande importância na área de processamento de imagens e tem sido discutido pela comunidade científica já há mais de 20 anos. Hoje é consenso que os esqueletos Euclidianos devem ter as seguintes características: ï¬?nos, centrados, homotópicos e reversíveis, i.e., suficientes para a reconstrução do objeto original. Neste trabalho, introduzimos o Eixo Mediano Euclidiano Exato em Resolução Aumentada -HMA, com o objetivo de obter um eixo mediano mais ï¬?no do que o obtido pela definição clássica. Combinando o HMA com um eï¬?ciente algoritmo de afinamento paralelo homotópico, propomos um esqueleto Euclidiano que é centrado, homotópico, reversível e mais ï¬?no que os já existentes na literatura. O esqueleto proposto tem a particularidade adicional de ser único e independente de decisões arbitrárias. São dados algoritmos e provas, assim como exemplos de aplicações dos esqueletos propostos em imagens reais, mostrando as vantagens da proposta. O texto inclui também uma revisão bibliográfica sobre algoritmos de transformada de distância, eixo mediano e esqueletos homotópicosAbstract: The extraction of Euclidean skeletons is a subject of great importance in the domain of image processing and it has been discussed by the scientiï¬?c community since more than 20 years.Today it is a consensus that Euclidean skeletons should present the following characteristics: thin, centered, homotopic and reversible, i.e., sufï¬?cient for the reconstruction of the original object. In this work, we introduce the Exact Euclidean Medial Axis in Higher Resolution -HMA, with the objective of obtaining a medial axis which is thinner than the one obtained by the classical medial axis deï¬?nition. By combining the HMA with an efï¬?cient parallel homotopic thinning algorithm we propose an Euclidean skeleton which is centered, homotopic, reversible and thinner than the existing similars in the literature. The proposed skeleton has the additional particularity of being unique and independent of arbitrary choices. Algorithms and proofs are given, as well as applicative examples of the proposed skeletons in real images, showing the advantages of the proposal. The text also includes an overview on algorithms for the Euclidean distance transform algorithms, the medial axis extraction, as well as homotopic skeletonsDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    MAP: Medial Axis Based Geometric Routing in Sensor Networks

    Get PDF
    One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, the length of the communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing Protocol that does not require locations, makes routing decisions locally, and achieves good load balancing. In its preprocessing phase, MAP constructs the medial axis of the sensor field, defined as the set of nodes with at least two closest boundary nodes. The medial axis of the network captures both the complex geometry and non-trivial topology of the sensor field. It can be represented compactly by a graph whose size is comparable with the complexity of the geometric features (e.g., the number of holes). Each node is then given a name related to its position with respect to the medial axis. The routing scheme is derived through local decisions based on the names of the source and destination nodes and guarantees delivery with reasonable and natural routes. We show by both theoretical analysis and simulations that our medial axis based geometric routing scheme is scalable, produces short routes, achieves excellent load balancing, and is very robust to variations in the network model

    Efficient computation of discrete Voronoi diagram and homotopy-preserving simplified medial axis of a 3d polyhedron

    Get PDF
    The Voronoi diagram is a fundamental geometric data structure and has been well studied in computational geometry and related areas. A Voronoi diagram defined using the Euclidean distance metric is also closely related to the Blum medial axis, a well known skeletal representation. Voronoi diagrams and medial axes have been shown useful for many 3D computations and operations, including proximity queries, motion planning, mesh generation, finite element analysis, and shape analysis. However, their application to complex 3D polyhedral and deformable models has been limited. This is due to the difficulty of computing exact Voronoi diagrams in an efficient and reliable manner. In this dissertation, we bridge this gap by presenting efficient algorithms to compute discrete Voronoi diagrams and simplified medial axes of 3D polyhedral models with geometric and topological guarantees. We apply these algorithms to complex 3D models and use them to perform interactive proximity queries, motion planning and skeletal computations. We present three new results. First, we describe an algorithm to compute 3D distance fields of geometric models by using a linear factorization of Euclidean distance vectors. This formulation maps directly to the linearly interpolating graphics rasterization hardware and enables us to compute distance fields of complex 3D models at interactive rates. We also use clamping and culling algorithms based on properties of Voronoi diagrams to accelerate this computation. We introduce surface distance maps, which are a compact distance vector field representation based on a mesh parameterization of triangulated two-manifolds, and use them to perform proximity computations. Our second main result is an adaptive sampling algorithm to compute an approximate Voronoi diagram that is homotopy equivalent to the exact Voronoi diagram and preserves topological features. We use this algorithm to compute a homotopy-preserving simplified medial axis of complex 3D models. Our third result is a unified approach to perform different proximity queries among multiple deformable models using second order discrete Voronoi diagrams. We introduce a new query called N-body distance query and show that different proximity queries, including collision detection, separation distance and penetration depth can be performed based on Nbody distance query. We compute the second order discrete Voronoi diagram using graphics hardware and use distance bounds to overcome the sampling errors and perform conservative computations. We have applied these queries to various deformable simulations and observed up to an order of magnitude improvement over prior algorithms
    corecore