76,384 research outputs found

    Exact maximum-likelihood method to detect patterns in real networks

    Get PDF
    In order to detect patterns in real networks, randomized graph ensembles that preserve only part of the topology of an observed network are systematically used as fundamental null models. However, their generation is still problematic. The existing approaches are either computationally demanding and beyond analytic control, or analytically accessible but highly approximate. Here we propose a solution to this long-standing problem by introducing an exact and fast method that allows to obtain expectation values and standard deviations of any topological property analytically, for any binary, weighted, directed or undirected network. Remarkably, the time required to obtain the expectation value of any property is as short as that required to compute the same property on the single original network. Our method reveals that the null behavior of various correlation properties is different from what previously believed, and highly sensitive to the particular network considered. Moreover, our approach shows that important structural properties (such as the modularity used in community detection problems) are currently based on incorrect expressions, and provides the exact quantities that should replace them.

    Analytical maximum-likelihood method to detect patterns in real networks

    Get PDF
    In order to detect patterns in real networks, randomized graph ensembles that preserve only part of the topology of an observed network are systematically used as fundamental null models. However, their generation is still problematic. The existing approaches are either computationally demanding and beyond analytic control, or analytically accessible but highly approximate. Here we propose a solution to this long-standing problem by introducing an exact and fast method that allows to obtain expectation values and standard deviations of any topological property analytically, for any binary, weighted, directed or undirected network. Remarkably, the time required to obtain the expectation value of any property is as short as that required to compute the same property on the single original network. Our method reveals that the null behavior of various correlation properties is different from what previously believed, and highly sensitive to the particular network considered. Moreover, our approach shows that important structural properties (such as the modularity used in community detection problems) are currently based on incorrect expressions, and provides the exact quantities that should replace them.Comment: 26 pages, 10 figure

    Unbiased sampling of network ensembles

    Get PDF
    Sampling random graphs with given properties is a key step in the analysis of networks, as random ensembles represent basic null models required to identify patterns such as communities and motifs. An important requirement is that the sampling process is unbiased and efficient. The main approaches are microcanonical, i.e. they sample graphs that match the enforced constraints exactly. Unfortunately, when applied to strongly heterogeneous networks (like most real-world examples), the majority of these approaches become biased and/or time-consuming. Moreover, the algorithms defined in the simplest cases, such as binary graphs with given degrees, are not easily generalizable to more complicated ensembles. Here we propose a solution to the problem via the introduction of a "Maximize and Sample" ("Max & Sam" for short) method to correctly sample ensembles of networks where the constraints are `soft', i.e. realized as ensemble averages. Our method is based on exact maximum-entropy distributions and is therefore unbiased by construction, even for strongly heterogeneous networks. It is also more computationally efficient than most microcanonical alternatives. Finally, it works for both binary and weighted networks with a variety of constraints, including combined degree-strength sequences and full reciprocity structure, for which no alternative method exists. Our canonical approach can in principle be turned into an unbiased microcanonical one, via a restriction to the relevant subset. Importantly, the analysis of the fluctuations of the constraints suggests that the microcanonical and canonical versions of all the ensembles considered here are not equivalent. We show various real-world applications and provide a code implementing all our algorithms.Comment: MatLab code available at http://www.mathworks.it/matlabcentral/fileexchange/46912-max-sam-package-zi

    Triadic motifs and dyadic self-organization in the World Trade Network

    Full text link
    In self-organizing networks, topology and dynamics coevolve in a continuous feedback, without exogenous driving. The World Trade Network (WTN) is one of the few empirically well documented examples of self-organizing networks: its topology strongly depends on the GDP of world countries, which in turn depends on the structure of trade. Therefore, understanding which are the key topological properties of the WTN that deviate from randomness provides direct empirical information about the structural effects of self-organization. Here, using an analytical pattern-detection method that we have recently proposed, we study the occurrence of triadic "motifs" (subgraphs of three vertices) in the WTN between 1950 and 2000. We find that, unlike other properties, motifs are not explained by only the in- and out-degree sequences. By contrast, they are completely explained if also the numbers of reciprocal edges are taken into account. This implies that the self-organization process underlying the evolution of the WTN is almost completely encoded into the dyadic structure, which strongly depends on reciprocity.Comment: 12 pages, 3 figures; Best Paper Award at the 6th International Conference on Self-Organizing Systems, Delft, The Netherlands, 15-16/03/201

    Mixture models and exploratory analysis in networks

    Get PDF
    Networks are widely used in the biological, physical, and social sciences as a concise mathematical representation of the topology of systems of interacting components. Understanding the structure of these networks is one of the outstanding challenges in the study of complex systems. Here we describe a general technique for detecting structural features in large-scale network data which works by dividing the nodes of a network into classes such that the members of each class have similar patterns of connection to other nodes. Using the machinery of probabilistic mixture models and the expectation-maximization algorithm, we show that it is possible to detect, without prior knowledge of what we are looking for, a very broad range of types of structure in networks. We give a number of examples demonstrating how the method can be used to shed light on the properties of real-world networks, including social and information networks.Comment: 8 pages, 4 figures, two new examples in this version plus minor correction

    An efficient and principled method for detecting communities in networks

    Full text link
    A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasonable running times. We test the method both on real-world networks and on synthetic benchmarks and find that it gives results competitive with previous methods. We also show that the same approach can be used to extract nonoverlapping community divisions via a relaxation method, and demonstrate that the algorithm is competitively fast and accurate for the nonoverlapping problem.Comment: 14 pages, 5 figures, 1 tabl
    • …
    corecore