383 research outputs found

    Analog dithering techniques for highly linear and efficient transmitters

    Get PDF
    The current thesis is about investigation of new methods and techniques to be able to utilize the switched mode amplifiers, for linear and efficient applications. Switched mode amplifiers benefit from low overlap between the current and voltage wave forms in their output terminals, but they seriously suffer from nonlinearity. This makes it impossible to use them to amplify non-constant envelope message signals, where very high linearity is expected. In order to do that, dithering techniques are studied and a full linearity analysis approach is developed, by which the linearity performance of the dithered amplifier can be analyzed, based on the dithering level and frequency. The approach was based on orthogonalization of the equivalent nonlinearity and is capable of prediction of both co-channel and adjacent channel nonlinearity metrics, for a Gaussian complex or real input random signal. Behavioral switched mode amplifier models are studied and new models are developed, which can be utilized to predict the nonlinear performance of the dithered power amplifier, including the nonlinear capacitors effects. For HFD application, self-oscillating and asynchronous sigma delta techniques are currently used, as pulse with modulators (PWM), to encode a generic RF message signal, on the duty cycle of an output pulse train. The proposed models and analysis techniques were applied to this architecture in the first phase, and the method was validated with measurement on a prototype sample, realized in 65 nm TSMC CMOS technology. Afterwards, based on the same dithering phenomenon, a new linearization technique was proposed, which linearizes the switched mode class D amplifier, and at the same time can reduce the reactive power loss of the amplifier. This method is based on the dithering of the switched mode amplifier with frequencies lower than the band-pass message signal and is called low frequency dithering (LFD). To test this new technique, two test circuits were realized and the idea was applied to them. Both of the circuits were of the hard nonlinear type (class D) and are integrated CMOS and discrete LDMOS technologies respectively. The idea was successfully tested on both test circuits and all of the linearity metric predictions for a digitally modulated RF signal and a random signal were compared to the measurements. Moreover a search method to find the optimum dither frequency was proposed and validated. Finally, inspired by averaging interpretation of the dithering phenomenon, three new topologies were proposed, which are namely DLM, RF-ADC and area modulation power combining, which are all nonlinear systems linearized with dithering techniques. A new averaging method was developed and used for analysis of a Gilbert cell mixer topology, which resulted in a closed form relationship for the conversion gain, for long channel devices

    Modeling, control and simulation of control-affine nonlinear systems with state-dependent transfer functions

    Get PDF
    There has been no known research that applies nonlinear transfer function to a nonlinear control problem. The belief is that nonlinear systems have no transfer functions. The Laplace transformation required to define transfer functions is not tractable mathematically when the coefficients of the differential equation are functions of state, output and control variables. In other words, it is not defined for systems that do not obey principles of superposition. Only linear systems obey this principle. Therefore, this dissertation work represents the very first research to demonstrate how transfer functions can be used to represent and design feedback control for nonlinear systems. Real systems are inherently nonlinear. A few important examples include an aerospace vehicle whose mass parameter is variable because of fuel consumption, artificial pancreas and HIV drug delivery systems in the bio-medical field, robot arm and magnetic levitation systems in the mechanical engineering field and phase-locked-loop in the electrical engineering field. The subject of nonlinear system control, however, is more of an art than science. There is no unified framework for analysis and design. Success of a design usually depends on a designer’s experience. All the theory and design tools available, e.g., the whole subject of linear algebra, are based on systems described with linear models, which obey the principle of superposition. Control system design by linearization, which is based on approximated linear time invariant (LTI) system design model, is the closest to a general design framework available for nonlinear systems. The most important problem in a control system designed by linearization is the problem of design model parameter variation during its operation. Obviously, this problem is the result of assuming a constant parameter or LTI design model for a real system that is actually nonlinear or has variable parameter model. In other words, a real system does not have constant parameters as approximated by its LTI design model. This problem is important enough to have specific design methods such as robust control and Horowitz quantitative feedback theory developed to address it. As the system is operated further and further out of the approximate linear range this problem gets worst. Furthermore, the controller based on design by linearization is not a tracking controller. It is a regulator that usually cannot track a varying reference input. Investigated in the research presented in this dissertation is a nonlinear transfer function-based control method, i.e., one based on a model represented with varying parameters therefore a natural solution to the model parameter variation problem of design by linearization. The class of applicable nonlinear and time-varying systems are those that are affine in their control input such that they can be described by the central concept of this scheme, a state-dependent transfer function (SDTF). The introduction of this concept of nonlinear transfer function design model and the feedback control scheme based on it are the contributions of the research presented in this dissertation

    Discrete-Time Observer Design for Sensorless Synchronous Motor Drives

    Get PDF
    This paper deals with the speed and position estimation of interior permanent-magnet synchronous motor (IPM) and synchronous reluctance motor (SyRM) drives. A speed-adaptive full-order observer is designed and analyzed in the discrete-time domain. The observer design is based on the exact discrete-time motor model, which inherently takes the delays in the control system into account. The proposed observer is experimentally evaluated using a 6.7-kW SyRM drive. The analysis and experimental results indicate that major performance improvements can be obtained with the direct discrete-time design, especially if the sampling frequency is relatively low compared to the fundamental frequency. The ratio below 10 between the sampling and fundamental frequencies is achieved in experiments with the proposed discrete-time design.Peer reviewe

    Stability analysis of a phase plane control system

    Get PDF
    Many aerospace attitude control systems utilize a phase plane control scheme which includes nonlinear elements such as dead zone and ideal relay. Nonlinear control techniques such as pulse width modulation (PWM), describing functions, and absolute stability are implemented to determine stability. To evaluate phase plane control robustness, stability margin prediction methods must be developed. While PWM has been used to predict stability margins, in this research, describing functions and absolute stability are extended to predict stability margins. Time domain simulations demonstrate all techniques yield conservative gain margin results. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Two filters are designed in this thesis; one meets PWM stability margin specifications and the other holds for Popov stability
    • …
    corecore