347 research outputs found

    Hybrid approximate message passing

    Full text link
    Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing interactions through aggregates of small, linearizable couplings of variables. AMP approximations based on the Central Limit Theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance--complexity trade-off can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.The work of S. Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and in part by the industrial affiliates of NYU WIRELESS. The work of A. K. Fletcher was supported in part by the National Science Foundation under Grants 1254204 and 1738286 and in part by the Office of Naval Research under Grant N00014-15-1-2677. The work of V. K. Goyal was supported in part by the National Science Foundation under Grant 1422034. The work of E. Byrne and P. Schniter was supported in part by the National Science Foundation under Grant CCF-1527162. (1116589 - National Science Foundation; 1302336 - National Science Foundation; 1547332 - National Science Foundation; 1254204 - National Science Foundation; 1738286 - National Science Foundation; 1422034 - National Science Foundation; CCF-1527162 - National Science Foundation; NYU WIRELESS; N00014-15-1-2677 - Office of Naval Research

    Recognizing point clouds using conditional random fields

    Get PDF
    Detecting objects in cluttered scenes is a necessary step for many robotic tasks and facilitates the interaction of the robot with its environment. Because of the availability of efficient 3D sensing devices as the Kinect, methods for the recognition of objects in 3D point clouds have gained importance during the last years. In this paper, we propose a new supervised learning approach for the recognition of objects from 3D point clouds using Conditional Random Fields, a type of discriminative, undirected probabilistic graphical model. The various features and contextual relations of the objects are described by the potential functions in the graph. Our method allows for learning and inference from unorganized point clouds of arbitrary sizes and shows significant benefit in terms of computational speed during prediction when compared to a state-of-the-art approach based on constrained optimization.Peer ReviewedPostprint (author’s final draft

    Truncating the loop series expansion for Belief Propagation

    Full text link
    Recently, M. Chertkov and V.Y. Chernyak derived an exact expression for the partition sum (normalization constant) corresponding to a graphical model, which is an expansion around the Belief Propagation solution. By adding correction terms to the BP free energy, one for each "generalized loop" in the factor graph, the exact partition sum is obtained. However, the usually enormous number of generalized loops generally prohibits summation over all correction terms. In this article we introduce Truncated Loop Series BP (TLSBP), a particular way of truncating the loop series of M. Chertkov and V.Y. Chernyak by considering generalized loops as compositions of simple loops. We analyze the performance of TLSBP in different scenarios, including the Ising model, regular random graphs and on Promedas, a large probabilistic medical diagnostic system. We show that TLSBP often improves upon the accuracy of the BP solution, at the expense of increased computation time. We also show that the performance of TLSBP strongly depends on the degree of interaction between the variables. For weak interactions, truncating the series leads to significant improvements, whereas for strong interactions it can be ineffective, even if a high number of terms is considered.Comment: 31 pages, 12 figures, submitted to Journal of Machine Learning Researc

    Dynamics and Performance of Susceptibility Propagation on Synthetic Data

    Full text link
    We study the performance and convergence properties of the Susceptibility Propagation (SusP) algorithm for solving the Inverse Ising problem. We first study how the temperature parameter (T) in a Sherrington-Kirkpatrick model generating the data influences the performance and convergence of the algorithm. We find that at the high temperature regime (T>4), the algorithm performs well and its quality is only limited by the quality of the supplied data. In the low temperature regime (T<4), we find that the algorithm typically does not converge, yielding diverging values for the couplings. However, we show that by stopping the algorithm at the right time before divergence becomes serious, good reconstruction can be achieved down to T~2. We then show that dense connectivity, loopiness of the connectivity, and high absolute magnetization all have deteriorating effects on the performance of the algorithm. When absolute magnetization is high, we show that other methods can be work better than SusP. Finally, we show that for neural data with high absolute magnetization, SusP performs less well than TAP inversion.Comment: 9 pages, 7 figure

    Pairwise MRF Calibration by Perturbation of the Bethe Reference Point

    Get PDF
    We investigate different ways of generating approximate solutions to the pairwise Markov random field (MRF) selection problem. We focus mainly on the inverse Ising problem, but discuss also the somewhat related inverse Gaussian problem because both types of MRF are suitable for inference tasks with the belief propagation algorithm (BP) under certain conditions. Our approach consists in to take a Bethe mean-field solution obtained with a maximum spanning tree (MST) of pairwise mutual information, referred to as the \emph{Bethe reference point}, for further perturbation procedures. We consider three different ways following this idea: in the first one, we select and calibrate iteratively the optimal links to be added starting from the Bethe reference point; the second one is based on the observation that the natural gradient can be computed analytically at the Bethe point; in the third one, assuming no local field and using low temperature expansion we develop a dual loop joint model based on a well chosen fundamental cycle basis. We indeed identify a subclass of planar models, which we refer to as \emph{Bethe-dual graph models}, having possibly many loops, but characterized by a singly connected dual factor graph, for which the partition function and the linear response can be computed exactly in respectively O(N) and O(N2)O(N^2) operations, thanks to a dual weight propagation (DWP) message passing procedure that we set up. When restricted to this subclass of models, the inverse Ising problem being convex, becomes tractable at any temperature. Experimental tests on various datasets with refined L0L_0 or L1L_1 regularization procedures indicate that these approaches may be competitive and useful alternatives to existing ones.Comment: 54 pages, 8 figure. section 5 and refs added in V
    • …
    corecore