1,848 research outputs found

    Quantitative Stability and Optimality Conditions in Convex Semi-Infinite and Infinite Programming

    Get PDF
    This paper concerns parameterized convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional Banach (resp. finite-dimensional) spaces and that are indexed by an arbitrary fixed set T . Parameter perturbations on the right-hand side of the inequalities are measurable and bounded, and thus the natural parameter space is l(T)l_{\infty}(T). Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map, which involves only the system data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. On one hand, in this way we extend to the convex setting the results of [4] developed in the linear framework under the boundedness assumption on the system coefficients. On the other hand, in the case when the decision space is reflexive, we succeed to remove this boundedness assumption in the general convex case, establishing therefore results new even for linear infinite and semi-infinite systems. The last part of the paper provides verifiable necessary optimality conditions for infinite and semi-infinite programs with convex inequality constraints and general nonsmooth and nonconvex objectives. In this way we extend the corresponding results of [5] obtained for programs with linear infinite inequality constraints

    Quantitative Stability of Linear Infinite Inequality Systems under Block Perturbations with Applications to Convex Systems

    Get PDF
    The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set JJ. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l(J)l_{\infty}(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system's data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of [3] developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system's coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case

    The Radius of Metric Subregularity

    Get PDF
    There is a basic paradigm, called here the radius of well-posedness, which quantifies the "distance" from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.Comment: 20 page

    H\"older Error Bounds and H\"older Calmness with Applications to Convex Semi-Infinite Optimization

    Get PDF
    Using techniques of variational analysis, necessary and sufficient subdifferential conditions for H\"older error bounds are investigated and some new estimates for the corresponding modulus are obtained. As an application, we consider the setting of convex semi-infinite optimization and give a characterization of the H\"older calmness of the argmin mapping in terms of the level set mapping (with respect to the objective function) and a special supremum function. We also estimate the H\"older calmness modulus of the argmin mapping in the framework of linear programming.Comment: 25 page
    corecore