8,488 research outputs found

    Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms

    Get PDF
    We present a mathematical framework for constructing and analyzing parallel algorithms for lattice Kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. The algorithms can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). The proposed parallel algorithms are controlled-error approximations of kinetic Monte Carlo algorithms, departing from the predominant paradigm of creating parallel KMC algorithms with exactly the same master equation as the serial one. Our methodology relies on a spatial decomposition of the Markov operator underlying the KMC algorithm into a hierarchy of operators corresponding to the processors' structure in the parallel architecture. Based on this operator decomposition, we formulate Fractional Step Approximation schemes by employing the Trotter Theorem and its random variants; these schemes, (a) determine the communication schedule} between processors, and (b) are run independently on each processor through a serial KMC simulation, called a kernel, on each fractional step time-window. Furthermore, the proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules.Comment: 34 pages, 9 figure

    Chaste: a test-driven approach to software development for biological modelling

    Get PDF
    Chaste (‘Cancer, heart and soft-tissue environment’) is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence.\ud \ud Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling

    Parallel Fast Legendre Transform

    Get PDF
    We discuss a parallel implementation of a fast algorithm for the discrete polynomial Legendre transform We give an introduction to the DriscollHealy algorithm using polynomial arithmetic and present experimental results on the eciency and accuracy of our implementation The algorithms were implemented in ANSI C using the BSPlib communications library Furthermore we present a new algorithm for computing the Chebyshev transform of two vectors at the same tim
    corecore