77,597 research outputs found

    Classification and Error Estimation for Discrete Data

    Get PDF
    Discrete classification is common in Genomic Signal Processing applications, in particular in classification of discretized gene expression data, and in discrete gene expression prediction and the inference of boolean genomic regulatory networks. Once a discrete classifier is obtained from sample data, its performance must be evaluated through its classification error. In practice, error estimation methods must then be employed to obtain reliable estimates of the classification error based on the available data. Both classifier design and error estimation are complicated, in the case of Genomics, by the prevalence of small-sample data sets in such applications. This paper presents a broad review of the methodology of classification and error estimation for discrete data, in the context of Genomics, focusing on the study of performance in small sample scenarios, as well as asymptotic behavior

    Improving market-based forecasts of short-term interest rates: time-varying stationarity and the predictive content of switching regime-expectations

    Get PDF
    Modeling short-term interest rates as following regime-switching processes has become increasingly popular. Theoretically, regime-switching models are able to capture rational expectations of infrequently occurring discrete events. Technically, they allow for potential time-varying stationarity. After discussing both aspects with reference to the recent literature, this paper provides estimations of various univariate regime-switching specifications for the German three-month money market rate and bivariate specifications additionally including the term spread. However, the main contribution is a multi-step out-of-sample forecasting competition. It turns out that forecasts are improved substantially when allowing for state-dependence. Particularly, the informational content of the term spread for future short rate changes can be exploited optimally within a multivariate regime-switching framework

    Are v1 simple cells optimized for visual occlusions? : A comparative study

    Get PDF
    Abstract: Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. Author Summary: The statistics of our visual world is dominated by occlusions. Almost every image processed by our brain consists of mutually occluding objects, animals and plants. Our visual cortex is optimized through evolution and throughout our lifespan for such stimuli. Yet, the standard computational models of primary visual processing do not consider occlusions. In this study, we ask what effects visual occlusions may have on predicted response properties of simple cells which are the first cortical processing units for images. Our results suggest that recently observed differences between experiments and predictions of the standard simple cell models can be attributed to occlusions. The most significant consequence of occlusions is the prediction of many cells sensitive to center-surround stimuli. Experimentally, large quantities of such cells are observed since new techniques (reverse correlation) are used. Without occlusions, they are only obtained for specific settings and none of the seminal studies (sparse coding, ICA) predicted such fields. In contrast, the new type of response naturally emerges as soon as occlusions are considered. In comparison with recent in vivo experiments we find that occlusive models are consistent with the high percentages of center-surround simple cells observed in macaque monkeys, ferrets and mice

    Concepts for on-board satellite image registration. Volume 2: IAS prototype performance evaluation standard definition

    Get PDF
    Problems encountered in testing onboard signal processing hardware designed to achieve radiometric and geometric correction of satellite imaging data are considered. These include obtaining representative image and ancillary data for simulation and the transfer and storage of a large quantity of image data at very high speed. The high resolution, high speed preprocessing of LANDSAT-D imagery is considered

    Evaluation of Performance Measures for Classifiers Comparison

    Full text link
    The selection of the best classification algorithm for a given dataset is a very widespread problem, occuring each time one has to choose a classifier to solve a real-world problem. It is also a complex task with many important methodological decisions to make. Among those, one of the most crucial is the choice of an appropriate measure in order to properly assess the classification performance and rank the algorithms. In this article, we focus on this specific task. We present the most popular measures and compare their behavior through discrimination plots. We then discuss their properties from a more theoretical perspective. It turns out several of them are equivalent for classifiers comparison purposes. Futhermore. they can also lead to interpretation problems. Among the numerous measures proposed over the years, it appears that the classical overall success rate and marginal rates are the more suitable for classifier comparison task
    corecore