354 research outputs found

    Exact computation of the expectation curves of the bit-flip mutation using landscapes theory

    Get PDF
    Chicano, F., & Alba E. (2011). Exact computation of the expectation curves of the bit-flip mutation using landscapes theory. Proceedings of 13th Annual Genetic and Evolutionary Computation Conference, Dublin, Ireland, July 12-16, 2011. pp. 2027–2034.Bit-flip mutation is a common operation when a genetic algorithm is applied to solve a problem with binary representation. We use in this paper some results of landscapes theory and Krawtchouk polynomials to exactly compute the expected value of the fitness of a mutated solution. We prove that this expectation is a polynomial in p, the probability of flipping a single bit. We analyze these polynomials and propose some applications of the obtained theoretical results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish Ministry of Science and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project) and the Andalusian Government under contract P07-TIC-03044 (DIRICOM project)

    Problem Understanding through Landscape Theory

    Get PDF
    In order to understand the structure of a problem we need to measure some features of the problem. Some examples of measures suggested in the past are autocorrelation and fitness-distance correlation. Landscape theory, developed in the last years in the field of combinatorial optimization, provides mathematical expressions to efficiently compute statistics on optimization problems. In this paper we discuss how can we use optimización combinatoria in the context of problem understanding and present two software tools that can be used to efficiently compute the mentioned measures.Ministerio de Economía y Competitividad (TIN2011-28194

    Exact computation of the expectation surfaces for uniform crossover along with bit-flip mutation

    Get PDF
    Theoretical Computer Science 545, 2014, pp.76-93,Uniform crossover and bit-flip mutation are two popular operators used in genetic algorithms to generate new solutions in an iteration of the algorithm when the solutions are represented by binary strings. We use the Walsh decomposition of pseudo-Boolean functions and properties of Krawtchouk matrices to exactly compute the expected value for the fitness of a child generated by uniform crossover followed by bit-flip mutation from two parent solutions. We prove that this expectation is a polynomial in ρ, the probability of selecting the best-parent bit in the crossover, and μ, the probability of flipping a bit in the mutation. We provide efficient algorithms to compute this polynomial for Onemax and MAX-SAT problems, but the results also hold for other problems such as NK-Landscapes. We also analyze the features of the expectation surfaces.Spanish Ministry of Science and Innovation and FEDER under contract TIN2011-28194 (the roadME project). Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number FA9550-11-1-0088

    Exact computation of the expectation curves for uniform crossover

    Get PDF
    Chicano, F., Whitley D., & Alba E. (2012). Exact computation of the expectation curves for uniform crossover. (Soule, T., & Moore J. H., Ed.).Genetic and Evolutionary Computation Conference, GECCO'12, Philadelphia, PA, USA, July 7-11, 2012. 1301–1308.Uniform crossover is a popular operator used in genetic algorithms to combine two tentative solutions of a problem represented as binary strings. We use the Walsh decomposition of pseudo-Boolean functions and properties of Krawtchouk matrices to exactly compute the expected value for the fitness of a child generated by uniform crossover from two parent solutions. We prove that this expectation is a polynomial in , the probability of selecting the best-parent bit. We provide efficient algorithms to compute this polynomial for ONEMAX and MAX-kSAT problems, but the results also hold for domains such as NK-Landscapes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish Ministry of Science and Innovation and FEDER under contract TIN2011-28194 (the roadME project). Andalusian Government under contract P07-TIC-03044 (DIRICOM project)

    Runtime analysis of mutation-based geometric semantic genetic programming on boolean functions.

    Get PDF
    Geometric Semantic Genetic Programming (GSGP) is a recently introduced form of Genetic Programming (GP), rooted in a geometric theory of representations, that searches directly the semantic space of functions/programs, rather than the space of their syntactic representations (e.g., trees) as in traditional GP. Remarkably, the fitness landscape seen by GSGP is always – for any domain and for any problem – unimodal with a linear slope by construction. This has two important consequences: (i) it makes the search for the optimum much easier than for traditional GP; (ii) it opens the way to analyse theoretically in a easy manner the optimisation time of GSGP in a general setting. The runtime analysis of GP has been very hard to tackle, and only simplified forms of GP on specific, unrealistic problems have been studied so far. We present a runtime analysis of GSGP with various types of mutations on the class of all Boolean functionsThe authors are grateful to Dirk Sudholt for helping check the proofs. Alberto Moraglio was supported by EPSRC grant EP/I010297/

    A Computational View on Natural Evolution: On the Rigorous Analysis of the Speed of Adaptation

    Get PDF
    Inspired by Darwin’s ideas, Turing (1948) proposed an evolutionary search as an automated problem solving approach. Mimicking natural evolution, evolutionary algorithms evolve a set of solutions through the repeated application of the evolutionary operators (mutation, recombination and selection). Evolutionary algorithms belong to the family of black box algorithms which are general purpose optimisation tools. They are typically used when no good specific algorithm is known for the problem at hand and they have been reported to be surprisingly effective (Eiben and Smith, 2015; Sarker et al., 2002). Interestingly, although evolutionary algorithms are heavily inspired by natural evolution, their study has deviated from the study of evolution by the population genetics community. We believe that this is a missed opportunity and that both fields can benefit from an interdisciplinary collaboration. The question of how long it takes for a natural population to evolve complex adaptations has fascinated researchers for decades. We will argue that this is an equivalent research question to the runtime analysis of algorithms. By making use of the methods and techniques used in both fields, we will derive plenty of meaningful results for both communities, proving that this interdisciplinary approach is effective and relevant. We will apply the tools used in the theoretical analysis of evolutionary algorithms to quantify the complexity of adaptive walks on many landscapes, illustrating how the structure of the fitness landscape and the parameter conditions can impose limits to adaptation. Furthermore, as geneticists use diffusion theory to track the change in the allele frequencies of a population, we will develop a brand new model to analyse the dynamics of evolutionary algorithms. Our model, based on stochastic differential equations, will allow to describe not only the expected behaviour, but also to measure how much the process might deviate from that expectation

    Fitness function distributions over generalized search neighborhoods in the q-ary hypercube

    Get PDF
    Evolutionary Computation, 21(4): 561-590, 2013The frequency distribution of a fitness function over regions of its domain is an important quantity for understanding the behavior of algorithms that employ randomized sampling to search the function. In general, exactly characterizing this distribution is at least as hard as the search problem, since the solutions typically live in the tails of the distribution. However, in some cases it is possible to efficiently retrieve a collection of quantities (called moments) that describe the distribution. In this paper, we consider functions of bounded epistasis that are defined over length-n strings from a finite alphabet of cardinality q. Many problems in combinatorial optimization can be specified as search problems over functions of this type. Employing Fourier analysis of functions over finite groups, we derive an efficient method for computing the exact moments of the frequency distribution of fitness functions over Hamming regions of the q-ary hypercube. We then use this approach to derive equations that describe the expected fitness of the offspring of any point undergoing uniform mutation. The results we present provide insight into the statistical structure of the fitness function for a number of combinatorial problems. For the graph coloring problem, we apply our results to efficiently compute the average number of constraint violations that lie within a certain number of steps of any coloring. We derive an expression for the mutation rate that maximizes the expected fitness of an offspring at each fitness level. We also apply the results to the slightly more complex frequency assignment problem, a relevant application in the domain of the telecommunications industry. As with the graph coloring problem, we provide formulas for the average value of the fitness function in Hamming regions around a solution and the expectation-optimal mutation rate.Spanish Ministry of Science and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project). Andalusian Government under contract P07-TIC-03044 (DIRICOM project). Air Force Office of Scientific Re- search, Air Force Materiel Command, USAF, under grant number FA9550-08-1-0422
    corecore