1,500 research outputs found

    Using a conic bundle method to accelerate both phases of a quadratic convex reformulation

    Full text link
    We present algorithm MIQCR-CB that is an advancement of method MIQCR~(Billionnet, Elloumi and Lambert, 2012). MIQCR is a method for solving mixed-integer quadratic programs and works in two phases: the first phase determines an equivalent quadratic formulation with a convex objective function by solving a semidefinite problem (SDP)(SDP), and, in the second phase, the equivalent formulation is solved by a standard solver. As the reformulation relies on the solution of a large-scale semidefinite program, it is not tractable by existing semidefinite solvers, already for medium sized problems. To surmount this difficulty, we present in MIQCR-CB a subgradient algorithm within a Lagrangian duality framework for solving (SDP)(SDP) that substantially speeds up the first phase. Moreover, this algorithm leads to a reformulated problem of smaller size than the one obtained by the original MIQCR method which results in a shorter time for solving the second phase. We present extensive computational results to show the efficiency of our algorithm

    A Duality Theory with Zero Duality Gap for Nonlinear Programming

    Get PDF
    Duality is an important notion for constrained optimization which provides a theoretical foundation for a number of constraint decomposition schemes such as separable programming and for deriving lower bounds in space decomposition algorithms such as branch and bound. However, the conventional duality theory has the fundamental limit that it leads to duality gaps for nonconvex optimization problems, especially discrete and mixed-integer problems where the feasible sets are nonconvex. In this paper, we propose a novel extended duality theory for nonlinear optimization that overcomes some limitations of previous dual methods. Based on a new dual function, the extended duality theory leads to zero duality gap for general nonconvex problems defined in discrete, continuous, and mixed-integer spaces under mild conditions

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page
    corecore