2,701 research outputs found

    Applications of biased-randomized algorithms and simheuristics in integrated logistics

    Get PDF
    Transportation and logistics (T&L) activities play a vital role in the development of many businesses from different industries. With the increasing number of people living in urban areas, the expansion of on-demand economy and e-commerce activities, the number of services from transportation and delivery has considerably increased. Consequently, several urban problems have been potentialized, such as traffic congestion and pollution. Several related problems can be formulated as a combinatorial optimization problem (COP). Since most of them are NP-Hard, the finding of optimal solutions through exact solution methods is often impractical in a reasonable amount of time. In realistic settings, the increasing need for 'instant' decision-making further refutes their use in real life. Under these circumstances, this thesis aims at: (i) identifying realistic COPs from different industries; (ii) developing different classes of approximate solution approaches to solve the identified T&L problems; (iii) conducting a series of computational experiments to validate and measure the performance of the developed approaches. The novel concept of 'agile optimization' is introduced, which refers to the combination of biased-randomized heuristics with parallel computing to deal with real-time decision-making.Las actividades de transporte y logística (T&L) juegan un papel vital en el desarrollo de muchas empresas de diferentes industrias. Con el creciente número de personas que viven en áreas urbanas, la expansión de la economía a lacarta y las actividades de comercio electrónico, el número de servicios de transporte y entrega ha aumentado considerablemente. En consecuencia, se han potencializado varios problemas urbanos, como la congestión del tráfico y la contaminación. Varios problemas relacionados pueden formularse como un problema de optimización combinatoria (COP). Dado que la mayoría de ellos son NP-Hard, la búsqueda de soluciones óptimas a través de métodos de solución exactos a menudo no es práctico en un período de tiempo razonable. En entornos realistas, la creciente necesidad de una toma de decisiones "instantánea" refuta aún más su uso en la vida real. En estas circunstancias, esta tesis tiene como objetivo: (i) identificar COP realistas de diferentes industrias; (ii) desarrollar diferentes clases de enfoques de solución aproximada para resolver los problemas de T&L identificados; (iii) realizar una serie de experimentos computacionales para validar y medir el desempeño de los enfoques desarrollados. Se introduce el nuevo concepto de optimización ágil, que se refiere a la combinación de heurísticas aleatorias sesgadas con computación paralela para hacer frente a la toma de decisiones en tiempo real.Les activitats de transport i logística (T&L) tenen un paper vital en el desenvolupament de moltes empreses de diferents indústries. Amb l'augment del nombre de persones que viuen a les zones urbanes, l'expansió de l'economia a la carta i les activitats de comerç electrònic, el nombre de serveis del transport i el lliurament ha augmentat considerablement. En conseqüència, s'han potencialitzat diversos problemes urbans, com ara la congestió del trànsit i la contaminació. Es poden formular diversos problemes relacionats com a problema d'optimització combinatòria (COP). Com que la majoria són NP-Hard, la recerca de solucions òptimes mitjançant mètodes de solució exactes sovint no és pràctica en un temps raonable. En entorns realistes, la creixent necessitat de prendre decisions "instantànies" refuta encara més el seu ús a la vida real. En aquestes circumstàncies, aquesta tesi té com a objectiu: (i) identificar COP realistes de diferents indústries; (ii) desenvolupar diferents classes d'aproximacions aproximades a la solució per resoldre els problemes identificats de T&L; (iii) la realització d'una sèrie d'experiments computacionals per validar i mesurar el rendiment dels enfocaments desenvolupats. S'introdueix el nou concepte d'optimització àgil, que fa referència a la combinació d'heurístiques esbiaixades i aleatòries amb informàtica paral·lela per fer front a la presa de decisions en temps real.Tecnologies de la informació i de xarxe

    Multi-objective Dual-Sale Channel Supply Chain Network Design Based on NSGA-II

    Get PDF
    [[abstract]]In this study, we propose a two-echelon multi-objective dual-sale channel supply chain network (DCSCN) model. The goal is to determine (i) the set of installed DCs, (ii) the set of customers the DC should work with, how much inventory each DC should order and (iv) the distribution routes for physical retailers or online e-tailers (all starting and ending at the same DC). Our model overcomes the drawback by simultaneously tackling location and routing decisions. In addition to the typical costs associated with facility location and the inventory-related costs, we explicitly consider the pivotal routing costs between the DCs and their assigned customers. Therefore, a multiple objectives location-routing model involves two conflicting objectives is initially proposed so as to permit a comprehensive trade-off evaluation. To solve this multiple objectives programming problem, this study integrates genetic algorithms, clustering analysis, Non-dominated Sorting Genetic Algorithm II (NSGA-II). NSGA-II searches for the Pareto set. Several experiments are simulated to demonstrate the possibility and efficacy of the proposed approach.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙

    Online Grocery Operations in Omni-channel Retailing:Opportunities and Challenges

    Get PDF

    Online Grocery Operations in Omni-channel Retailing:Opportunities and Challenges

    Get PDF
    Online grocery has grown rapidly in different parts of the world over the last two decades. However, it is still not clear whether online grocery retailing can be profitable in the long run. Grocery retail is a low margin, high-cost business. Picking and delivering an online grocery order is labor intensive and costly. The delivery fee typically does not cover all the fulfilment costs. Many grocery retailers are making substantial investments to develop an online sales channel next to the traditional stores. With the emergence of omnichannel grocery retail, customers are provided with a seamless experience across online and offline channels. There are many synergies that exist between online and offline distribution, which if utilized properly can lead to significant cost savings to the retailer

    Heuristic Algorithms for Optimization of Task Allocation and Result Distribution in Peer-to-Peer Computing Systems

    Full text link
    Recently, distributed computing system have been gaining much attention due to a growing demand for various kinds of effective computations in both industry and academia. In this paper, we focus on Peer-to-Peer (P2P) computing systems, also called public-resource computing systems or global computing systems. P2P computing systems, contrary to grids, use personal computers and other relatively simple electronic equipment (e.g., the PlayStation console) to process sophisticated computational projects. A significant example of the P2P computing idea is the BOINC (Berkeley Open Infrastructure for Network Computing) project. To improve the performance of the computing system, we propose to use the P2P approach to distribute results of computational projects, i.e., results are transmitted in the system like in P2P file sharing systems (e.g., BitTorrent). In this work, we concentrate on offline optimization of the P2P computing system including two elements: scheduling of computations and data distribution. The objective is to minimize the system OPEX cost related to data processing and data transmission. We formulate an Integer Linear Problem (ILP) to model the system and apply this formulation to obtain optimal results using the CPLEX solver. Next, we propose two heuristic algorithms that provide results very close to an optimum and can be used for larger problem instances than those solvable by CPLEX or other ILP solvers

    E-Fulfillment and Multi-Channel Distribution – A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in today’s e-commerce operations is the combination of ‘bricks-and-clicks’, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering.Distribution;E-fulfillment;Literature Review;Online Retailing

    Integrating sensors data in optimization methods for sustainable urban logistic

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Time Slot Allocation and Management of E-grocery

    Get PDF
    The purpose of the study is to present a solution approach to the reduction of exhaust emission by reducing fuel consumption through the time slot allocation to different service areas that minimize the time used in the delivery process. Further, it strives to create a better option solution approach that curtails the existing challenges confronting e-grocery retailers. A mathematical model is designed with appropriate constraints for the decision variables. We present an exact and a heuristic approach for this problem in which an assignment of customers’ orders to vehicles is obtained by solving a generalized assignment problem with an objective function which minimizes the time used in the delivery leading to the minimization of the fuel consumption and delivery cost. With Matlab and Cplex MILP (Mixed Integer Linear Programming), our experiment shows that by varying the number of vehicles in the fleet, our exact approach (model) can optimally solve more significant problems that can be used by existing and emerging e-grocers

    A structured method for the optimization of the existing last mile logistic flows

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceIn a fast-moving world some business exists due to the interconnectivity between countries. This happens because transports are able to reach the other side of the globe within few days and without being too expensive compensating the lower costs of production and competitive advantages. This is true for well-organized and big supply chains but even them can benefit from integration with disconnected and more complex supply chain as it is the case of e-commerce chains. The transaction of small packages from online shopping required in a totally distinct country of the place of production have very specific characteristics as they are spot flows, hard to predict and to combine with other goods owing to the fact that the destination of flows are different every time and it is not always worth it to dedicate a transport for such a small goods value and in addition most times, logistics have to answer to some challenging marketing requirements meaning they have time windows to fulfil. Last mile is a big part of logistics transports and is one important part of it that can really help companies having better prices and revenues for their transports. Last mile solutions need to be easy to implement and really have to translate in quick gains to logistic companies that are largely reducing their margins to increase competitiveness. In this context, the study aims to investigate and define a method following design Research Methodology hopping to draw some innovative solutions for the problem of last mile. In this respect, the work developed intends to study the solutions already implemented and extract insights on how distribution is made and how to maximize last mile profit through the mature of an algorithm able to reduce inefficiencies in a simple way without having to wiggle too much the structure of businesses as resources of last mile service providers are understood to be scarce as many last mile companies are small sized and running under big logistic players. The solution aims to attain the different marketing requirements exactly as it was defined without having to compromise anything but still being able to make good profit margins and perhaps make room for new opportunities to arise that previously were not profitable
    corecore