396 research outputs found

    Enumeration of Matchings: Problems and Progress

    Full text link
    This document is built around a list of thirty-two problems in enumeration of matchings, the first twenty of which were presented in a lecture at MSRI in the fall of 1996. I begin with a capsule history of the topic of enumeration of matchings. The twenty original problems, with commentary, comprise the bulk of the article. I give an account of the progress that has been made on these problems as of this writing, and include pointers to both the printed and on-line literature; roughly half of the original twenty problems were solved by participants in the MSRI Workshop on Combinatorics, their students, and others, between 1996 and 1999. The article concludes with a dozen new open problems. (Note: This article supersedes math.CO/9801060 and math.CO/9801061.)Comment: 1+37 pages; to appear in "New Perspectives in Geometric Combinatorics" (ed. by Billera, Bjorner, Green, Simeon, and Stanley), Mathematical Science Research Institute publication #37, Cambridge University Press, 199

    Marathon: An open source software library for the analysis of Markov-Chain Monte Carlo algorithms

    Full text link
    In this paper, we consider the Markov-Chain Monte Carlo (MCMC) approach for random sampling of combinatorial objects. The running time of such an algorithm depends on the total mixing time of the underlying Markov chain and is unknown in general. For some Markov chains, upper bounds on this total mixing time exist but are too large to be applicable in practice. We try to answer the question, whether the total mixing time is close to its upper bounds, or if there is a significant gap between them. In doing so, we present the software library marathon which is designed to support the analysis of MCMC based sampling algorithms. The main application of this library is to compute properties of so-called state graphs which represent the structure of Markov chains. We use marathon to investigate the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graph realizations. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time

    Trees and Matchings

    Full text link
    In this article, Temperley's bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the ``square-octagon'' lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon, our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson's algorithm allows us to quickly generate random samples of perfect matchings.Comment: 32 pages, 19 figures (minor revisions from version 1

    Randomised algorithms for counting and generating combinatorial structures

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D85048 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Random multi-index matching problems

    Full text link
    The multi-index matching problem (MIMP) generalizes the well known matching problem by going from pairs to d-uplets. We use the cavity method from statistical physics to analyze its properties when the costs of the d-uplets are random. At low temperatures we find for d>2 a frozen glassy phase with vanishing entropy. We also investigate some properties of small samples by enumerating the lowest cost matchings to compare with our theoretical predictions.Comment: 22 pages, 16 figure
    • …
    corecore