11 research outputs found

    Performance Analysis of Optimal Single Stream Beamforming in MIMO Dual-Hop AF Systems

    Full text link
    This paper investigates the performance of optimal single stream beamforming schemes in multiple-input multiple-output (MIMO) dual-hop amplify-and-forward (AF) systems. Assuming channel state information is not available at the source and relay, the optimal transmit and receive beamforming vectors are computed at the destination, and the transmit beamforming vector is sent to the transmitter via a dedicated feedback link. Then, a set of new closed-form expressions for the statistical properties of the maximum eigenvalue of the resultant channel is derived, i.e., the cumulative density function (cdf), probability density function (pdf) and general moments, as well as the first order asymptotic expansion and asymptotic large dimension approximations. These analytical expressions are then applied to study three important performance metrics of the system, i.e., outage probability, average symbol error rate and ergodic capacity. In addition, more detailed treatments are provided for some important special cases, e.g., when the number of antennas at one of the nodes is one or large, simple and insightful expressions for the key parameters such as diversity order and array gain of the system are derived. With the analytical results, the joint impact of source, relay and destination antenna numbers on the system performance is addressed, and the performance of optimal beamforming schemes and orthogonal space-time block-coding (OSTBC) schemes are compared. Results reveal that the number of antennas at the relay has a great impact on how the numbers of antennas at the source and destination contribute to the system performance, and optimal beamforming not only achieves the same maximum diversity order as OSTBC, but also provides significant power gains over OSTBC.Comment: to appear in IEEE Journal on Selected Areas in Communications special issue on Theories and Methods for Advanced Wireless Relay

    Contributions to the Performance Analysis of Intervehicular Communications Systems and Schemes

    Get PDF
    RÉSUMÉ Le but des systèmes de communication intervéhicule (Inter-Vehicle Communication – IVC) est d'améliorer la sécurité de conduite en utilisant des capteurs et des techniques de communication sans fil pour être en mesure de communiquer mutuellement sans aucune intervention extérieure. Avec l'utilisation de ces systèmes, les communications véhicule à véhicule (V2V) peuvent être plus efficaces dans la prévention des accidents et la décongestion de la circulation que si chaque véhicule travaillait individuellement. Une des solutions proposées pour les systèmes IVC est l’utilisation des systèmes de communication coopérative, qui en principe, augmentent l'efficacité spectrale et énergétique, la couverture du réseau, et réduit la probabilité de défaillance. La diversité d'antenne (entrées multiples sorties multiples « Multiple-Input Multiple-Output » ou MIMO) peut également être une alternative pour les systèmes IVC pour améliorer la capacité du canal et la diversité (fiabilité), mais en échange d’une complexité accrue. Toutefois, l'application de telles solutions est difficile, car les communications sans fil entre les véhicules sont soumises à d’importants effets d'évanouissements des canaux appelés (canaux sujets aux évanouissements de n*Rayleigh, « n*Rayleigh fading channels»), ce qui conduit à la dégradation des performances. Par conséquent, dans cette thèse, nous proposons une analyse de la performance globale des systèmes de transmission coopératifs et MIMO sur des canaux sujets aux évanouissements de n*Rayleigh. Cette analyse permettra d’aider les chercheurs pour la conception et la mise en œuvre de systèmes de communication V2V avec une complexité moindre. En particulier, nous étudions d'abord la performance de la sélection du relais de coopération avec les systèmes IVC, on suppose que la transmission via « Amplify-and-Forward» (AF) ou bien «Decode-and-Forward» (DF) est assurée par N relais pour transférer le message de la source à la destination. La performance du système est analysée en termes de probabilité de défaillance, la probabilité d'erreur de symbole, et la capacité moyenne du canal. Les résultats numériques démontrent que la sélection de relais réalise une diversité de l'ordre de (d≈mN/n) pour les deux types de relais, où m est un paramètre évanouissement de Rayleigh en cascade. Nous étudions ensuite la performance des systèmes IVC à sauts multiples avec et sans relais régénératifs. Dans cette étude, nous dérivons des expressions approximatives pour la probabilité de défaillance et le niveau d’évanouissement lorsque la diversité en réception basée sur le ratio maximum de combinaison (MRC) est employée. En outre, nous analysons la répartition de puissance pour le système sous-jacent afin de minimiser la probabilité globale de défaillance. Nous montrons que la performance des systèmes régénératifs est meilleure que celle des systèmes non régénératifs lorsque l’ordre de cascade n est faible, tandis qu’ils ont des performances similaires lorsque n est élevé. Ensuite, nous considérons le problème de la détection de puissance des signaux inconnus aux n* canaux de Rayleigh. Dans ce travail, de nouvelles expressions approximatives sont dérivées de la probabilité de détection moyenne avec et sans diversité en réception MRC. En outre, la performance du système est analysée lorsque la détection de spectre coopérative (CSS) est considérée sous diverses contraintes de canaux (par exemple, les canaux de communication parfaits et imparfaits). Les résultats numériques ont montré que la fiabilité de détection diminue à mesure que l'ordre n augmente et s’améliore sensiblement lorsque CSS emploie le schéma MRC. Il est démontré que CSS avec le schéma MRC maintient la probabilité de fausse alarme minimale dans les canaux d’information imparfaite plutôt que d'augmenter le nombre d'utilisateurs en coopération. Enfin, nous présentons une nouvelle approche pour l'analyse des performances des systèmes IVC sur n*canaux de Rayleigh, en utilisant n_T antennes d'émission et n_R antennes de réception pour lutter contre l'effet d’évanouissement. Dans ce contexte, nous évaluons la performance des systèmes MIMO-V2V basés sur la sélection des antennes d'émission avec un ratio maximum de combinaison (TAS/MRC) et la sélection combinant (TAS/SC). Dans cette étude, nous dérivons des expressions analytiques plus précises pour la probabilité de défaillance, la probabilité d'erreur de symbole, et l’évanouissement sur n*canaux Rayleigh. Il est montré que les deux régimes ont le même ordre de diversité maximale équivalent à (d≈mn_T n_R /n) . En outre, TAS / MRC offre un gain de performance mieux que TAS/ SC lorsque le nombre d'antennes de réception est plus que celle des antennes d’émission, mais l’amélioration de la performance est limitée lorsque n augmente.----------Abstract The purpose of intervehicular communication (IVC) systems is to enhance driving safety, in which vehicles use sensors and wireless communication techniques to talk to each other without any roadside intervention. Using these systems, vehicle-to-vehicle (V2V) communications can be more effective in avoiding accidents and traffic congestion than if each vehicle works individually. A potential solution can be implemented in this research area using cooperative communications systems which, in principle, increase spectral and power efficiency, network coverage, and reduce the outage probability. Antenna diversity (i.e., multiple-input multiple output (MIMO) systems) can also be an alternative solution for IVC systems to enhance channel capacity and diversity (reliability) but in exchange of an increased complexity. However, applying such solutions is challenging since wireless communications among vehicles is subject to harsh fading channels called ‘n*Rayleigh fading channels’, which leads to performance degradation. Therefore, in this thesis we provide a comprehensive performance analysis of cooperative transmission and MIMO systems over n*Rayleigh fading channels that help researchers for the design and implementation of V2V communication systems with lower complexity. Specifically, we first investigate the performance of cooperative IVC systems with relay selection over n*Rayleigh fading channels, assuming that both the decode-and-forward and the amplify-and-forward relaying protocols are achieved by N relays to transfer the source message to the destination. System performance is analyzed in terms of outage probability, symbol error probability, and average channel capacity. The numerical results have shown that the best relay selection approach achieves the diversity order of (d≈mN/n) where m is a cascaded Rayleigh fading parameter. Second, we investigate the performance of multihop-IVC systems with regenerative and non-regenerative relays. In this study, we derive approximate closed-form expressions for the outage probability and amount of fading when the maximum ratio combining (MRC) diversity reception is employed. Further, we analyze the power allocation for the underlying scheme in order to minimize the overall outage probability. We show that the performance of regenerative systems is better than that of non-regenerative systems when the cascading order n is low and they have similar performance when n is high. Third, we consider the problem of energy detection of unknown signals over n*Rayleigh fading channels. In this work, novel approximate expressions are derived for the average probability of detection with and without MRC diversity reception. Moreover, the system performance is analyzed when cooperative spectrum sensing (CSS) is considered under various channel constraints (e.g, perfect and imperfect reporting channels). The numerical results show that the detection reliability decreases as the cascading order n increases and substantially improves when CSS employs MRC schemes. It is demonstrated that CSS with MRC scheme keeps the probability of false alarm minimal under imperfect reporting channels rather than increasing the number of cooperative users. Finally, we present a new approach for the performance analysis of IVC systems over n*Rayleigh fading channels, using n_T transmit and n_R receive antennas to combat fading influence. In this context, we evaluate the performance of MIMO-V2V systems based on the transmit antenna selection with maximum ratio combining (TAS/MRC) and selection combining (TAS/SC) schemes. In this study, we derive tight analytical expressions for the outage probability, the symbol error probability, and the amount of fading over n*Rayleigh fading channels. It is shown that both schemes have the same maximum diversity order equivalent to (d≈mn_T n_R /n). In addition, TAS/MRC offers a better performance gain than TAS/SC scheme when the number of receive antennas is more than that of transmit antennas, but the performance improvement is limited as n increases

    A novel equivalent definition of modified Bessel functions for performance analysis of multi-hop wireless communication systems

    Get PDF
    A statistical model is derived for the equivalent signal-to-noise ratio of the Source-to-Relay-to-Destination (S-R-D) link for Amplify-and-Forward (AF) relaying systems that are subject to block Rayleigh-fading. The probability density function and the cumulated density function of the S-R-D link SNR involve modified Bessel functions of the second kind. Using fractional-calculus mathematics, a novel approach is introduced to rewrite those Bessel functions (and the statistical model of the S-R-D link SNR) in series form using simple elementary functions. Moreover, a statistical characterization of the total receive-SNR at the destination, corresponding to the S-R-D and the S-D link SNR, is provided for a more general relaying scenario in which the destination receives signals from both the relay and the source and processes them using maximum ratio combining (MRC). Using the novel statistical model for the total receive SNR at the destination, accurate and simple analytical expressions for the outage probability, the bit error probability, and the ergodic capacity are obtained. The analytical results presented in this paper provide a theoretical framework to analyze the performance of the AF cooperative systems with an MRC receiver

    Esquemas distribuídos para seleção de múltiplas antenas em redes com retransmissores do tipo amplifica-e-encaminha

    Get PDF
    Orientador: José Cândido Silveira Santos FilhoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A seleção de antena na transmissão tem sido apresentada como uma estratégia promissora para explorar os benefícios do uso de múltiplas antenas em sistemas de comunicações com retransmissores. No entanto, essa abordagem pode exigir um montante considerável de estimações de canal, transmissões de realimentação e atraso, dado que a sua implementação ótima e centralizada requer o monitoramento do estado do canal de todos os enlaces. Para aliviar essas deficiências, este trabalho propõe e analisa um conjunto de esquemas subótimos de seleção de antena na transmissão para sistemas com retransmissores do tipo amplifica-e-encaminha, os quais podem ser implementados de uma forma distribuída. Nos esquemas propostos, a antena é selecionada com base na informação local do estado de canal que está disponível na fonte, requerendo, portanto, um atraso e uma carga de realimentação pequenos e constantes. Tal abordagem é considerada em uso conjunto com diferentes técnicas, incluindo métodos de combinação de diversidade (combinação por máxima razão e combinação por seleção) no destino, protocolos de ganho fixo ou variável no relay, e transceptores com múltiplas antenas no relay. Além disso, para o caso particular em que o retransmissor tem ganho fixo e uma única antena, considera-se também o uso de um mecanismo de seleção de enlace na fonte. Para cada caso, o desempenho do sistema é avaliado em termos de probabilidade de outage, eficiência espectral e/ou vazão. O foco principal é direcionado à probabilidade de outage, para a qual são deduzidas expressões exatas e limitantes de desempenho. Uma análise assintótica é também efetuada para enriquecer a compreensão do comportamento do sistema quando operando sob alta relação sinal-ruído. Finalmente, como contribuição isolada, uma estratégia subótima e simples de alocação de potência é elaborada para um sistema com múltiplos retransmissores do tipo decodifica-e-encaminha, considerando-se enlaces com erros e codificação de fonte distribuídaAbstract: Transmit-antenna selection has been presented as a promising strategy for exploiting the benefits of multiple antennas in relaying communication systems. However, this approach may demand a considerable amount of channel estimations, feedback transmissions, and delay, since its optimal centralized implementation requires monitoring the channel state of all links. To alleviate those impairments, this work proposes and analyzes a set of suboptimal transmit-antenna selection schemes for amplify-and-forward relaying systems, which can be implemented in a distributed manner. In the proposed schemes, the antenna is selected based on the local channel-state information that is available at the source, thus requiring a low and constant delay/feedback overhead. Such an approach is considered along with different techniques, including diversity combining methods (maximal-ratio combining and selection combining) at the destination, fixed- and variable-gain protocols at the relay, and multi-antenna transceivers at the relay. A link-selection mechanism at the source is also considered for the special case of a single-antenna fixed-gain relay. For each case, the system performance is assessed in terms of outage probability, spectral efficiency, and/or throughput. The main focus is placed on the outage probability, for which exact or bound expressions are derived. An asymptotic analysis is also performed to provide further insights into the system behavior at high signal-to-noise ratio. Finally, as an isolated contribution, a simple suboptimal power allocation strategy is designed for a decode-and-forward multi-relay system with lossy intra-links and distributed source codingDoutoradoTelecomunicações e TelemáticaDoutora em Engenharia ElétricaCAPE

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Diversity techniques for broadband wireless communications: performance enhancement and analysis

    Get PDF
    The diversity techniques have been proven to be effective for next generation broadband wireless communications, and are the focus of this thesis. The diversity techniques can be broadly categorized into three types: Space, Time, and Frequency. In this thesis, we are mainly concerned with frequency and space diversity techniques. Orthogonal Frequency Division Multiplexing (OFDM) is a frequency diversity technique which offers several benefits such as easier digital implementation, immunity to multipath channels, low complexity channel equalization, etc. Despite these desirable features, there are few inherent problems in OFDM such as high peak-to-average power ratio (PAPR). High PAPR demands large dynamic range in the transmitted chain such as digital to analog converter (DAC) and power amplifier (PA). Unless pre-processed, the transmitted signal gets distorted due to quantization errors and inter-modulation. In the initial stage of PhD candidature, the author focused on PAPR reduction techniques. A simple modification on conventional iterative clipping and filtering (ICF) technique was proposed which has less computational complexity. The power savings achievable from clipping and filtering method was considered next. Furthermore the ICF is compared with another distortion-less PAPR reduction technique called Selective Mapping (SLM) based on power savings. Finally, impact of clipping and filtering on the channel estimation was analyzed. Space diversity seeks to exploit the multi-path characteristics of wireless channels to improve the performance. The simplest form of the space diversity is the receive diversity where two or more antennas with sufficient spacing collect independent copies of the same transmitted signal, which contributes to better signal reception. In this thesis new analytical expressions for spectral efficiency, capacity, and error rates were presented for adaptive systems with channel estimation error. Beamforming (steering signal towards desired receiver) is another useful technique in multiple-antenna systems to further improve the system performance. MRT (Maximal Ratio Transmission) or MIMO-MRC is such system where the transmitter, based on channel feedback from the receiver, uses weighting factors to steer the transmitted signal. Closed form expressions for symbol error rates were derived for MRT system with channel estimation error. The results were extended to evaluate closed form expressions of error rates for Rectangular QAM. Antenna correlation was considered in another contribution on MRC systems. Relay and Cooperative networks represent another form of spatial diversity and have recently attracted significant research attention. These networks rely on intermediate nodes called "relays" to establish communication between the source and the destination. In addition to coverage extension, the relay networks have shown to offer cooperative diversity when there is a direct link or multiple relays. The first contribution is to analyze a dual-hop amplify-forward relay networks with dissimilar fading scenarios. Next error rates of Rectangular QAM for decode-forward selection relay system are derived. Multiple antenna at relay is included to analyze the benefits of dual spatial diversity over Rayleigh and Nakagami fading channels. Antenna selection is a cost-effective way to exploit the antenna diversity. General Order Antenna Selection (GOAS), based on Ordered Statistics, is used to evaluate signal statistics for a MIMO relay network

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    RESOURCE ALLOCATION FOR WIRELESS RELAY NETWORKS

    Get PDF
    In this thesis, we propose several resource allocation strategies for relay networks in the context of joint power and bandwidth allocation and relay selection, and joint power allocation and subchannel assignment for orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) systems. Sharing the two best ordered relays with equal power between the two users over Rayleigh flat fading channels is proposed to establish full diversity order for both users. Closed form expressions for the outage probability, and bit error probability (BEP) performance measures for both amplify and forward (AF) and decode and forward (DF) cooperative communication schemes are developed for different scenarios. To utilize the full potentials of relay-assisted transmission in multi user systems, we propose a mixed strategy of AF relaying and direct transmission, where the user transmits part of the data using the relay, and the other part is transmitted using the direct link. The resource allocation problem is formulated to maximize the sum rate. A recursive algorithm alternating between power allocation and bandwidth allocation steps is proposed to solve the formulated resource allocation problem. Due to the conflict between limited wireless resources and the fast growing wireless demands, Stackelberg game is proposed to allocate the relay resources (power and bandwidth) between competing users, aiming to maximize the relay benefits from selling its resources. We prove the uniqueness of Stackelberg Nash Equilibrium (SNE) for the proposed game. We develop a distributed algorithm to reach SNE, and investigate the conditions for the stability of the proposed algorithm. We propose low complexity algorithms for AF-OFDMA and DF-OFDMA systems to assign the subcarriers to the users based on high SNR approximation aiming to maximize the weighted sum rate. Auction framework is proposed to devise competition based solutions for the resource allocation of AF-OFDMA aiming tomaximize either vi the sum rate or the fairness index. Two auction algorithms are proposed; sequential and one-shot auctions. In sequential auction, the users evaluate the subcarrier based on the rate marginal contribution. In the one-shot auction, the users evaluate the subcarriers based on an estimate of the Shapley value and bids on all subcarriers at once
    corecore