1,004 research outputs found

    Outage Performance of Two-Hop OFDM Systems with Spatially Random Decode-and-Forward Relays

    Full text link
    In this paper, we analyze the outage performance of different multicarrier relay selection schemes for two-hop orthogonal frequency-division multiplexing (OFDM) systems in a Poisson field of relays. In particular, special emphasis is placed on decode-and-forward (DF) relay systems, equipped with bulk and per-subcarrier selection schemes, respectively. The exact expressions for outage probability are derived in integrals for general cases. In addition, asymptotic expressions for outage probability in the high signal-to-noise ratio (SNR) region in the finite circle relay distribution region are determined in closed forms for both relay selection schemes. Also, the outage probabilities for free space in the infinite relay distribution region are derived in closed forms. Meanwhile, a series of important properties related to cooperative systems in random networks are investigated, including diversity, outage probability ratio of two selection schemes and optimization of the number of subcarriers in terms of system throughput. All analysis is numerically verified by simulations. Finally, a framework for analyzing the outage performance of OFDM systems with spatially random relays is constructed, which can be easily modified to analyze other similar cases with different forwarding protocols, location distributions and/or channel conditions

    On the Outage Probability of the Full-Duplex Interference-Limited Relay Channel

    Get PDF
    In this paper, we study the performance, in terms of the asymptotic error probability, of a user which communicates with a destination with the aid of a full-duplex in-band relay. We consider that the network is interference-limited, and interfering users are distributed as a Poisson point process. In this case, the asymptotic error probability is upper bounded by the outage probability (OP). We investigate the outage behavior for well-known cooperative schemes, namely, decode-and-forward (DF) and compress-and-forward (CF) considering fading and path loss. For DF we determine the exact OP and develop upper bounds which are tight in typical operating conditions. Also, we find the correlation coefficient between source and relay signals which minimizes the OP when the density of interferers is small. For CF, the achievable rates are determined by the spatial correlation of the interferences, and a straightforward analysis isn't possible. To handle this issue, we show the rate with correlated noises is at most one bit worse than with uncorrelated noises, and thus find an upper bound on the performance of CF. These results are useful to evaluate the performance and to optimize relaying schemes in the context of full-duplex wireless networks.Comment: 30 pages, 4 figures. Final version. To appear in IEEE JSAC Special Issue on Full-duplex Wireless Communications and Networks, 201

    Asymptotic Capacity of Large Fading Relay Networks with Random Node Failures

    Full text link
    To understand the network response to large-scale physical attacks, we investigate the asymptotic capacity of a half-duplex fading relay network with random node failures when the number of relays NN is infinitely large. In this paper, a simplified independent attack model is assumed where each relay node fails with a certain probability. The noncoherent relaying scheme is considered, which corresponds to the case of zero forward-link channel state information (CSI) at the relays. Accordingly, the whole relay network can be shown equivalent to a Rayleigh fading channel, where we derive the ϵ\epsilon-outage capacity upper bound according to the multiple access (MAC) cut-set, and the ϵ\epsilon-outage achievable rates for both the amplify-and-forward (AF) and decode-and-forward (DF) strategies. Furthermore, we show that the DF strategy is asymptotically optimal as the outage probability ϵ\epsilon goes to zero, with the AF strategy strictly suboptimal over all signal to noise ratio (SNR) regimes. Regarding the rate loss due to random attacks, the AF strategy suffers a less portion of rate loss than the DF strategy in the high SNR regime, while the DF strategy demonstrates more robust performance in the low SNR regime.Comment: 24 pages, 5 figures, submitted to IEEE Transactions on Communication

    On Outage Probability and Diversity-Multiplexing Tradeoff in MIMO Relay Channels

    Full text link
    Fading MIMO relay channels are studied analytically, when the source and destination are equipped with multiple antennas and the relays have a single one. Compact closed-form expressions are obtained for the outage probability under i.i.d. and correlated Rayleigh-fading links. Low-outage approximations are derived, which reveal a number of insights, including the impact of correlation, of the number of antennas, of relay noise and of relaying protocol. The effect of correlation is shown to be negligible, unless the channel becomes almost fully correlated. The SNR loss of relay fading channels compared to the AWGN channel is quantified. The SNR-asymptotic diversity-multiplexing tradeoff (DMT) is obtained for a broad class of fading distributions, including, as special cases, Rayleigh, Rice, Nakagami, Weibull, which may be non-identical, spatially correlated and/or non-zero mean. The DMT is shown to depend not on a particular fading distribution, but rather on its polynomial behavior near zero, and is the same for the simple "amplify-and-forward" protocol and more complicated "decode-and-forward" one with capacity achieving codes, i.e. the full processing capability at the relay does not help to improve the DMT. There is however a significant difference between the SNR-asymptotic DMT and the finite-SNR outage performance: while the former is not improved by using an extra antenna on either side, the latter can be significantly improved and, in particular, an extra antenna can be traded-off for a full processing capability at the relay. The results are extended to the multi-relay channels with selection relaying and typical outage events are identified.Comment: accepted by IEEE Trans. on Comm., 201

    Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks

    Full text link
    Synchronization of relay nodes is an important and critical issue in exploiting cooperative diversity in wireless networks. In this paper, two asynchronous cooperative diversity schemes are proposed, namely, distributed delay diversity and asynchronous space-time coded cooperative diversity schemes. In terms of the overall diversity-multiplexing (DM) tradeoff function, we show that the proposed independent coding based distributed delay diversity and asynchronous space-time coded cooperative diversity schemes achieve the same performance as the synchronous space-time coded approach which requires an accurate symbol-level timing synchronization to ensure signals arriving at the destination from different relay nodes are perfectly synchronized. This demonstrates diversity order is maintained even at the presence of asynchronism between relay node. Moreover, when all relay nodes succeed in decoding the source information, the asynchronous space-time coded approach is capable of achieving better DM-tradeoff than synchronous schemes and performs equivalently to transmitting information through a parallel fading channel as far as the DM-tradeoff is concerned. Our results suggest the benefits of fully exploiting the space-time degrees of freedom in multiple antenna systems by employing asynchronous space-time codes even in a frequency flat fading channel. In addition, it is shown asynchronous space-time coded systems are able to achieve higher mutual information than synchronous space-time coded systems for any finite signal-to-noise-ratio (SNR) when properly selected baseband waveforms are employed

    Performance Analysis of Best Relaying Protocol Selection with Interferences at Relays

    Get PDF
    In this paper, we investigate the performance of selecting the best protocol between amplify and forward (AF) and decode and forward (DF) in multiple relay networks with multiple interferences at relays. In the selection scheme, the best protocol between AF and DF is selected depending on the comparisons of signal-to-interference and noise ratio (SINR) for all source-relay links. All relays measure the received SINR to decide forwarding signal or not. When SINR is above a certain threshold then DF is used otherwise AF is used. Particularly, we develop an accurate mathematical model for best relaying protocol by considering the effect of interferences to our scheme. Firstly, we derive the asymptotic closed form expression for the symbol error rate (SER) for the system under study. Also we derive an upper and lower bound of symbol error rate and show how they were tight with exact SER. Furthermore an approximate expression for the outage probability is derived. Numerical results are finally presented to validate the theoretical analysis with a different number of relays
    corecore