5 research outputs found

    Asymmetric RF/FSO Relaying with HPA non-Linearities and Feedback Delay Constraints

    Full text link
    In this work, we investigate the performance of a dual-hop multiple relays system consisting of mixed Radio-Frequency (RF)/Free Space Optical (FSO) channels. The RF channels are subject to Rayleigh fading while the optical links experience the Double Generalized Gamma including atmospheric turbulence, path loss and the misalignment between the transmitter and the receiver aperture (also known as the pointing error). The FSO model also takes into account the receiver detection technique which could be either heterodyne or intensity modulation and direct detection. Partial Relay Selection with outdated Channel State Information is assumed based on the RF channels to select a relay and we also consider fixed and variable Amplify-and-Forward relaying schemes. In addition, we assume that the relays are affected by the high power amplifier non-linearities and herein we discuss two power amplifiers called Soft Envelope Limiter and Traveling Wave Tube Amplifier. Furthermore, novel closed-forms and tight upper bounds of the outage probability, the bit error probability, and the ergodic capacity are derived. Capitalizing on these performance, we derive the high SNR asymptotic to get engineering insights about the system gains such as the diversity and the coding gains. Finally, the mathematical expressions are validated using the Monte Carlo simulation

    Tractable Approach to MmWaves Cellular Analysis with FSO Backhauling under Feedback Delay and Hardware Limitations

    Full text link
    In this work, we investigate the performance of a millimeter waves (mmWaves) cellular system with free space optical (FSO) backhauling. MmWave channels are subject to Nakagami-m fading while the optical links experience the Double Generalized Gamma including atmospheric turbulence, path loss and the misalignment between the transmitter and the receiver aperture (also known as the pointing errors). The FSO model also takes into account the receiver detection technique which could be either heterodyne or intensity modulation and direct detection (IM/DD). Each user equipment (UE) has to be associated to one serving base station (BS) based on the received signal strength (RSS) or Channel State Information (CSI). We assume partial relay selection (PRS) with CSI based on mmWaves channels to select the BS associated with the highest received CSI. Each serving BS decodes the received signal for denoising, converts it into modulated FSO signal, and then forwards it to the data center. Thereby, each BS can be viewed as a decode-and-forward (DF) relay. In practice, the relay hardware suffers from nonlinear high power amplification (HPA) impairments which, substantially degrade the system performance. In this work, we will discuss the impacts of three common HPA impairments named respectively, soft envelope limiter (SEL), traveling wave tube amplifier (TWTA), and solid state power amplifier (SSPA). Novel closed-forms and tight upper bounds of the outage probability, the probability of error, and the achievable rate are derived. Capitalizing on these performance, we derive the high SNR asymptotes to get engineering insights into the system gain such as the diversity order.Comment: arXiv admin note: substantial text overlap with arXiv:1901.0424

    Effects of Eavesdropper on the Performance of Mixed {\eta}-{\mu} and DGG Cooperative Relaying System

    Full text link
    Free-space optical (FSO) channel offers line-of-sight wireless communication with high data rates and high secrecy utilizing unlicensed optical spectrum and also paves the way to the solution of the last-mile access problem. Since atmospheric turbulence is a hindrance to an enhanced secrecy performance, the mixed radio frequency (RF)-FSO system is gaining enormous research interest in recent days. But conventional FSO models except for the double generalized Gamma (DGG) model can not demonstrate secrecy performance for all ranges of turbulence severity. This reason has led us to propose a dual-hop eta-mu and unified DGG mixed RF-FSO network while considering eavesdropping at both RF and FSO hops. The security of these proposed scenarios is investigated in terms of two metrics, i.e., strictly positive secrecy capacity and secure outage probability. Exploiting these expressions, we further investigate how the secrecy performance is affected by various system parameters, i.e., fading, turbulence, and pointing errors. A demonstration is made between heterodyne detection (HD) and intensity modulation and direct detection (IM/DD) techniques while exhibiting superior secrecy performance for HD technique over IM/DD technique. Finally, all analytical results are corroborated via Monte-Carlo simulations

    Aggregate Hardware Impairments Over Mixed RF/FSO Relaying Systems With Outdated CSI

    Full text link
    In this paper, we propose a dual-hop RF (Radio-Frequency)/FSO (Free-Space Optical) system with multiple relays employing the Decode-and-Forward (DF) and Amplify-and-Forward (AF) with a Fixed Gain (FG) relaying scheme. The RF channels are subject to a Rayleigh distribution while the optical links experience a unified fading model emcopassing the atmospheric turbulence that follows the M\'alaga distribution (or also called the M\mathcal{M}-distribution), the atmospheric path loss and the pointing error. Partial relay selection (PRS) with outdated channel state information (CSI) is proposed to select the candidate relay to forward the signal to the destination. At the reception, the detection of the signal can be achieved following either heterodyne or Intensity Modulation and Direct Detection (IM/DD). Many previous attempts neglected the impact of the hardware impairments and assumed ideal hardware. This assumption makes sense for low data rate systems but it would no longer be valid for high data rate systems. In this work, we propose a general model of hardware impairment to get insight into quantifying its effects on the system performance. We will demonstrate that the hardware impairments have small impact on the system performance for low signal-to-noise ratio (SNR), but it can be destructive at high SNR values. Furthermore analytical expressions and upper bounds are derived for the outage probability and ergodic capacity while the symbol error probability is obtained through the numerical integration method. Capitalizing on these metrics, we also derive the high SNR asymptotes to get valuable insight into the system gains such as the diversity and the coding gains. Finally, analytical and numerical results are presented and validated by Monte Carlo simulation

    A Contemporary Survey on Free Space Optical Communication: Potential, Technical Challenges, Recent Advances and Research Direction

    Full text link
    Optical wireless communication (OWC) covering an ultra-wide range of unlicensed spectrum has emerged as an extent efficient solution to mitigate conventional RF spectrum scarcity ranging from communication distances from nm to several kilometers. Free space optical (FSO) systems operating near IR (NIR) band in OWC links has received substantial attention for enormous data transmission between fixed transceivers covering few kilometers path distance due to high optical bandwidth and higher bit rate as well. Despite the potential benefits of FSO technology, its widespread link reliability suffers especially in the long-range deployment due to atmospheric turbulence, cloud induced fading, some other environmental factors such as fog, aerosol, temperature variations, storms, heavy rain, cloud, pointing error, and scintillation. FSO has the potential to offloading massive traffic demands from RF networks, consequently the combined application of FSO/RF and radio over FSO (RoFSO) systems is regarded as an excellent solution to support 5G and beyond for improving the limitations of an individual system. This survey presents the overview of several key technologies and implications of state-of-the-art criteria in terms of spectrum reuse, classification, architecture and applications are described for understanding FSO. This paper provides principle, significance, demonstration, and recent technological development of FSO technology among different appealing optical wireless technologies. The opportunities in the near future, the potential challenges that need to be addressed to realize the successful deployment of FSO schemes are outlined.Comment: 59 pages, 14 figure
    corecore