65 research outputs found

    Exact and Approximate Determinization of Discounted-Sum Automata

    Get PDF
    A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, valuing a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by λi\lambda^i, where the discount factor λ\lambda is a fixed rational number greater than 1. The value of a word is the minimal value of the automaton runs on it. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, reflecting the assumption that earlier weights are more important than later weights. Unfortunately, determinization of NDAs, which is often essential in formal verification, is, in general, not possible. We provide positive news, showing that every NDA with an integral discount factor is determinizable. We complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: for every nonintegral rational discount factor λ\lambda, there is a nondeterminizable λ\lambda-NDA. We also prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. For general NDAs, we look into approximate determinization, which is always possible as the influence of a word's suffix decays. We show that the naive approach, of unfolding the automaton computations up to a sufficient level, is doubly exponential in the discount factor. We provide an alternative construction for approximate determinization, which is singly exponential in the discount factor, in the precision, and in the number of states. We also prove matching lower bounds, showing that the exponential dependency on each of these three parameters cannot be avoided. All our results hold equally for automata over finite words and for automata over infinite words

    Exact and Approximate Determinization of Discounted-Sum Automata

    Full text link

    Approximate Determinization of Quantitative Automata

    Get PDF
    Quantitative automata are nondeterministic finite automata with edge weights. They value a run by some function from the sequence of visited weights to the reals, and value a word by its minimal/maximal run. They generalize boolean automata, and have gained much attention in recent years. Unfortunately, important automaton classes, such as sum, discounted-sum, and limit-average automata, cannot be determinized. Yet, the quantitative setting provides the potential of approximate determinization. We define approximate determinization with respect to a distance function, and investigate this potential. We show that sum automata cannot be determinized approximately with respect to any distance function. However, restricting to nonnegative weights allows for approximate determinization with respect to some distance functions. Discounted-sum automata allow for approximate determinization, as the influence of a word\u27s suffix is decaying. However, the naive approach, of unfolding the automaton computations up to a sufficient level, is shown to be doubly exponential in the discount factor. We provide an alternative construction that is singly exponential in the discount factor, in the precision, and in the number of states. We prove matching lower bounds, showing exponential dependency on each of these three parameters. Average and limit-average automata are shown to prohibit approximate determinization with respect to any distance function, and this is the case even for two weights, 0 and 1

    Synthesis from Weighted Specifications with Partial Domains over Finite Words

    Get PDF
    info:eu-repo/semantics/publishe

    Discounted-Sum Automata with Multiple Discount Factors

    Get PDF
    Discounting the influence of future events is a key paradigm in economics and it is widely used in computer-science models, such as games, Markov decision processes (MDPs), reinforcement learning, and automata. While a single game or MDP may allow for several different discount factors, discounted-sum automata (NDAs) were only studied with respect to a single discount factor. For every integer ? ? ??{0,1}, as opposed to every ? ? ???, the class of NDAs with discount factor ? (?-NDAs) has good computational properties: it is closed under determinization and under the algebraic operations min, max, addition, and subtraction, and there are algorithms for its basic decision problems, such as automata equivalence and containment. We define and analyze discounted-sum automata in which each transition can have a different integral discount factor (integral NMDAs). We show that integral NMDAs with an arbitrary choice of discount factors are not closed under determinization and under algebraic operations. We then define and analyze a restricted class of integral NMDAs, which we call tidy NMDAs, in which the choice of discount factors depends on the prefix of the word read so far. Tidy NMDAs are as expressive as deterministic integral NMDAs with an arbitrary choice of discount factors, and some of their special cases are NMDAs in which the discount factor depends on the action (alphabet letter) or on the elapsed time. We show that for every function ? that defines the choice of discount factors, the class of ?-NMDAs enjoys all of the above good properties of integral NDAs, as well as the same complexities of the required decision problems. To this end, we also improve the previously known complexities of the decision problems of integral NDAs, and present tight bounds on the size blow-up involved in algebraic operations on them. All our results hold equally for automata on finite words and for automata on infinite words

    Discounted-Sum Automata with Multiple Discount Factors

    Full text link
    Discounting the influence of future events is a key paradigm in economics and it is widely used in computer-science models, such as games, Markov decision processes (MDPs), reinforcement learning, and automata. While a single game or MDP may allow for several different discount factors, discounted-sum automata (NDAs) were only studied with respect to a single discount factor. For every integer λN{0,1}\lambda\in\mathbb{N}\setminus\{0,1\}, as opposed to every λQN\lambda\in \mathbb{Q}\setminus\mathbb{N}, the class of NDAs with discount factor λ\lambda (λ\lambda-NDAs) has good computational properties: it is closed under determinization and under the algebraic operations min, max, addition, and subtraction, and there are algorithms for its basic decision problems, such as automata equivalence and containment. We define and analyze discounted-sum automata in which each transition can have a different integral discount factor (integral NMDAs). We show that integral NMDAs with an arbitrary choice of discount factors are not closed under determinization and under algebraic operations and that their containment problem is undecidable. We then define and analyze a restricted class of integral NMDAs, which we call tidy NMDAs, in which the choice of discount factors depends on the prefix of the word read so far. Some of their special cases are NMDAs that correlate discount factors to actions (alphabet letters) or to the elapsed time. We show that for every function θ\theta that defines the choice of discount factors, the class of θ\theta-NMDAs enjoys all of the above good properties of integral NDAs, as well as the same complexity of the required decision problems. Tidy NMDAs are also as expressive as deterministic integral NMDAs with an arbitrary choice of discount factors. All of our results hold for both automata on finite words and automata on infinite words.Comment: arXiv admin note: text overlap with arXiv:2301.0408

    Comparator automata in quantitative verification

    Full text link
    The notion of comparison between system runs is fundamental in formal verification. This concept is implicitly present in the verification of qualitative systems, and is more pronounced in the verification of quantitative systems. In this work, we identify a novel mode of comparison in quantitative systems: the online comparison of the aggregate values of two sequences of quantitative weights. This notion is embodied by {\em comparator automata} ({\em comparators}, in short), a new class of automata that read two infinite sequences of weights synchronously and relate their aggregate values. We show that {aggregate functions} that can be represented with B\"uchi automaton result in comparators that are finite-state and accept by the B\"uchi condition as well. Such {\em ω\omega-regular comparators} further lead to generic algorithms for a number of well-studied problems, including the quantitative inclusion and winning strategies in quantitative graph games with incomplete information, as well as related non-decision problems, such as obtaining a finite representation of all counterexamples in the quantitative inclusion problem. We study comparators for two aggregate functions: discounted-sum and limit-average. We prove that the discounted-sum comparator is ω\omega-regular iff the discount-factor is an integer. Not every aggregate function, however, has an ω\omega-regular comparator. Specifically, we show that the language of sequence-pairs for which limit-average aggregates exist is neither ω\omega-regular nor ω\omega-context-free. Given this result, we introduce the notion of {\em prefix-average} as a relaxation of limit-average aggregation, and show that it admits ω\omega-context-free comparators

    Non-Zero Sum Games for Reactive Synthesis

    Get PDF
    In this invited contribution, we summarize new solution concepts useful for the synthesis of reactive systems that we have introduced in several recent publications. These solution concepts are developed in the context of non-zero sum games played on graphs. They are part of the contributions obtained in the inVEST project funded by the European Research Council.Comment: LATA'16 invited pape

    On the Comparison of Discounted-Sum Automata with Multiple Discount Factors

    Full text link
    We look into the problems of comparing nondeterministic discounted-sum automata on finite and infinite words. That is, the problems of checking for automata AA and BB whether or not it holds that for all words ww, A(w)=B(w),A(w)B(w)A(w)=B(w), A(w) \leq B(w), or A(w)<B(w)A(w)<B(w). These problems are known to be decidable when both automata have the same single integral discount factor, while decidability is open in all other settings: when the single discount factor is a non-integral rational; when each automaton can have multiple discount factors; and even when each has a single integral discount factor, but the two are different. We show that it is undecidable to compare discounted-sum automata with multiple discount factors, even if all are integrals, while it is decidable to compare them if each has a single, possibly different, integral discount factor. To this end, we also provide algorithms to check for given nondeterministic automaton NN and deterministic automaton DD, each with a single, possibly different, rational discount factor, whether or not N(w)=D(w)N(w) = D(w), N(w)D(w)N(w) \geq D(w), or N(w)>D(w)N(w) > D(w) for all words ww.Comment: This is the full version of a chapter with the same title that appears in the FoSSaCS 2023 conference proceeding
    corecore