2,963 research outputs found

    To Develop and Implement Low Power, High Speed VLSI for Processing Signals using Multirate Techniques

    Get PDF
    Multirate technique is necessary for systems with different input and output sampling rates. Recent advances in mobile computing and communication applications demand low power and high speed VLSI DSP systems [4]. This Paper presents Multirate modules used for filtering to provide signal processing in wireless communication system. Many architecture developed for the design of low complexity, bit parallel Multiple Constant Multiplications operation which dominates the complexity of DSP systems. However, major drawbacks of present approaches are either too costly or not efficient enough. On the other hand, MCM and digit-serial adder offer alternative low complexity designs, since digit-serial architecture occupy less area and are independent of the data word length [1][10]. Multiple Constant Multiplications is efficient way to reduce the number of addition and subtraction in polyphase filter implementation. This Multirate design methodology is systematic and applicable to many problems. In this paper, attention has given to the MCM & digit serial architecture with shifting and adding techniques that offers alternative low complexity in operations. This paper also focused on Multirate Signal Processing Modules using Voltage and Technology scaling. Reduction of power consumption is important for VLSI system and also it becomes one of the most critical design parameter. Transistorized Multirate module which has full custom design with different circuit topology and optimization level simulated on cadence platform. Multirate modules are used AMI 0.6 um, TSMC 0.35 um, and TSMC 0.25 um technologies for different voltage scaling. The presented methodology provides a systematic way to derive circuit technique for high speed operation at a low supply voltage. Multirate polyphase interpolator and decimator are also designed and optimized at architectural level in order to analyze the terms power consumption, area and speed. DOI: 10.17762/ijritcc2321-8169.150314

    Optimization Algorithms For The Multiple Constant Multiplications Problem

    Get PDF
    (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2009(PhD) -- İstanbul Technical University, Institute of Science and Technology, 2009Bu tezde, birden fazla katsayının çarpımı (MCM) problemi, bir başka deyişle, bir değişkenin birden fazla katsayı ile çarpımının minimum sayıda toplama/çıkarma işlemi kullanılarak gerçeklenmesi için tasarlanmış kesin ve yaklaşık algoritmalar sunulmaktadır. Bir kesin alt ifade eliminasyonu (CSE) algoritmasının tasarımında, MCM problemini bir 0-1 tamsayı lineer programlama problemi olarak modelleyen daha önceden önerilmiş bir algoritma temel alınmıştır. Kesin CSE algoritması içinde, alan ve gecikme ölçütlerini ele alabilmek için yeni bir kesin model önerilmektedir. Kesin CSE algoritması tarafından taranacak arama uzayını küçültmek için problem indirgeme ve model basitleştirme teknikleri sunulmaktadır. Bu tekniklerin kullanımının kesin CSE algoritmasının daha büyük örnekler üzerinde uygulanmasına olanak sağladığı gösterilmektedir. Ayrıca, bu teknikler ile donatılmış kesin CSE algoritması, katsayıları genel sayı gösteriminde ele alacak ve kesin CSE algoritmasından daha iyi sonuçlar elde edecek şekilde genişletilmektedir. Bunların yanında, gerçek boyutlu örnekler üzerinde uygulanabilen bir kesin graf tabanlı algoritma sunulmaktadır. Bu kesin algoritmalara ek olarak, minimum sonuçlara oldukça yakın çözümler bulabilen ve kesin algoritmaların ele almakta zorlandığı örneklere uygulanabilen yaklaşık CSE ve graf tabanlı algoritmalar verilmektedir. Bu tezde önerilen kesin ve yaklaşık algoritmaların daha önceden önerilmiş sezgisel yöntemlerden daha iyi sonuçlar verdiği gösterilmektedir. Bunların yanısıra, bu tezde, kesin CSE algoritması gecikme kısıtı altında alanın minimize edilmesi, kapı seviyesinde alanın minimize edilmesi ve yüksek hızlı sayısal sonlu impuls cevaplı filtrelerin tasarımında alanın optimize edilmesi problemlerine uygulanmaktadır.In this thesis, exact and approximate algorithms designed for the multiple constant multiplications (MCM) problem, i.e., the implementation of the multiplication of a variable with multiple constants using minimum number of addition/subtraction operations, are introduced. In the design of an exact common subexpression elimination (CSE) algorithm, we relied on the previously proposed algorithm that models the MCM problem as a 0-1 integer linear programming problem. To handle the area and delay parameters in the exact CSE algorithm, a new exact model is proposed. To reduce the search space to be explored by the exact algorithm, problem reduction and model simplification techniques are introduced. It is shown that the use of these techniques enable the exact CSE algorithm to be applied on larger size instances. Also, the exact CSE algorithm equipped with these techniques is extended to handle the constants under general number representation yielding better solutions than those of the exact CSE algorithm. Besides, an exact graph-based algorithm that can be applied on real size instances is introduced. In addition to the exact algorithms, approximate CSE and graph-based algorithms that find similar results with the minimum solutions and can be applied on instances that the exact algorithms cannot deal with are presented. It is shown that the exact and approximate algorithms proposed in this thesis give better solutions than those of the previously proposed heuristic algorithms. Furthermore, in this thesis, the exact CSE algorithm is applied on the minimization of area under a delay constraint, the minimization of area at gate-level, and the optimization of area in high-speed digital finite impulse response filters synthesis problems.DoktoraPh

    An algorithmic and architectural study on Montgomery exponentiation in RNS

    Get PDF
    The modular exponentiation on large numbers is computationally intensive. An effective way for performing this operation consists in using Montgomery exponentiation in the Residue Number System (RNS). This paper presents an algorithmic and architectural study of such exponentiation approach. From the algorithmic point of view, new and state-of-the-art opportunities that come from the reorganization of operations and precomputations are considered. From the architectural perspective, the design opportunities offered by well-known computer arithmetic techniques are studied, with the aim of developing an efficient arithmetic cell architecture. Furthermore, since the use of efficient RNS bases with a low Hamming weight are being considered with ever more interest, four additional cell architectures specifically tailored to these bases are developed and the tradeoff between benefits and drawbacks is carefully explored. An overall comparison among all the considered algorithmic approaches and cell architectures is presented, with the aim of providing the reader with an extensive overview of the Montgomery exponentiation opportunities in RNS

    FIR filter optimization for video processing on FPGAs

    Get PDF

    An efficient null space inexact Newton method for hydraulic simulation of water distribution networks

    Full text link
    Null space Newton algorithms are efficient in solving the nonlinear equations arising in hydraulic analysis of water distribution networks. In this article, we propose and evaluate an inexact Newton method that relies on partial updates of the network pipes' frictional headloss computations to solve the linear systems more efficiently and with numerical reliability. The update set parameters are studied to propose appropriate values. Different null space basis generation schemes are analysed to choose methods for sparse and well-conditioned null space bases resulting in a smaller update set. The Newton steps are computed in the null space by solving sparse, symmetric positive definite systems with sparse Cholesky factorizations. By using the constant structure of the null space system matrices, a single symbolic factorization in the Cholesky decomposition is used multiple times, reducing the computational cost of linear solves. The algorithms and analyses are validated using medium to large-scale water network models.Comment: 15 pages, 9 figures, Preprint extension of Abraham and Stoianov, 2015 (https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001089), September 2015. Includes extended exposition, additional case studies and new simulations and analysi

    Towards a Low-SWaP 1024-beam Digital Array: A 32-beam Sub-system at 5.8 GHz

    Full text link
    Millimeter wave communications require multibeam beamforming in order to utilize wireless channels that suffer from obstructions, path loss, and multi-path effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous RF beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the FFT complexity of O(NlogN)\mathcal{O}(N\: \log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N=32N=32 case considered. The paper describes the proposed 32-point DFT approximation targeting a 1024-beams using a 2D array, and shows the multiplierless approximation and its mapping to a 32-beam sub-system consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx FPGA at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT as well as the proposed multiplier-free algorithm and are in good agreement.Comment: 19 pages, 8 figures, 4 tables. This version corrects a typo in the matrix equations from Section
    corecore