95 research outputs found

    The Complexity of Manipulating kk-Approval Elections

    Full text link
    An important problem in computational social choice theory is the complexity of undesirable behavior among agents, such as control, manipulation, and bribery in election systems. These kinds of voting strategies are often tempting at the individual level but disastrous for the agents as a whole. Creating election systems where the determination of such strategies is difficult is thus an important goal. An interesting set of elections is that of scoring protocols. Previous work in this area has demonstrated the complexity of misuse in cases involving a fixed number of candidates, and of specific election systems on unbounded number of candidates such as Borda. In contrast, we take the first step in generalizing the results of computational complexity of election misuse to cases of infinitely many scoring protocols on an unbounded number of candidates. Interesting families of systems include kk-approval and kk-veto elections, in which voters distinguish kk candidates from the candidate set. Our main result is to partition the problems of these families based on their complexity. We do so by showing they are polynomial-time computable, NP-hard, or polynomial-time equivalent to another problem of interest. We also demonstrate a surprising connection between manipulation in election systems and some graph theory problems

    Complexity of and Algorithms for Borda Manipulation

    Full text link
    We prove that it is NP-hard for a coalition of two manipulators to compute how to manipulate the Borda voting rule. This resolves one of the last open problems in the computational complexity of manipulating common voting rules. Because of this NP-hardness, we treat computing a manipulation as an approximation problem where we try to minimize the number of manipulators. Based on ideas from bin packing and multiprocessor scheduling, we propose two new approximation methods to compute manipulations of the Borda rule. Experiments show that these methods significantly outperform the previous best known %existing approximation method. We are able to find optimal manipulations in almost all the randomly generated elections tested. Our results suggest that, whilst computing a manipulation of the Borda rule by a coalition is NP-hard, computational complexity may provide only a weak barrier against manipulation in practice

    How many candidates are needed to make elections hard to manipulate?

    Full text link
    In multiagent settings where the agents have different preferences, preference aggregation is a central issue. Voting is a general method for preference aggregation, but seminal results have shown that all general voting protocols are manipulable. One could try to avoid manipulation by using voting protocols where determining a beneficial manipulation is hard computationally. The complexity of manipulating realistic elections where the number of candidates is a small constant was recently studied (Conitzer 2002), but the emphasis was on the question of whether or not a protocol becomes hard to manipulate for some constant number of candidates. That work, in many cases, left open the question: How many candidates are needed to make elections hard to manipulate? This is a crucial question when comparing the relative manipulability of different voting protocols. In this paper we answer that question for the voting protocols of the earlier study: plurality, Borda, STV, Copeland, maximin, regular cup, and randomized cup. We also answer that question for two voting protocols for which no results on the complexity of manipulation have been derived before: veto and plurality with runoff. It turns out that the voting protocols under study become hard to manipulate at 3 candidates, 4 candidates, 7 candidates, or never

    Solving hard problems in election systems

    Get PDF
    An interesting problem in the field of computational social choice theory is that of elections, in which a winner or set of winners is to be deduced from preferences among a collection of agents, in a way that attempts to maximize the collective well-being of the agents. Besides their obvious use in political science, elections are also used computationally, such as in multiagent systems, in which different agents may have different beliefs and preferences and must reach an agreeable decision. Because the purpose of voting is to gain an understanding of a collection of actual preferences, dishonesty in an election system is often harmful to the welfare of the voters as a whole. Different forms of dishonesty can be performed by the voters (manipulation), by an outside agent affecting the voters (bribery), or by the chair, or administrator, of an election (control). The Gibbard-Satterthwaite theorem shows that in all reasonable election systems, manipulation, or strategic voting, is always inevitable in some cases. Bartholdi, Tovey, and Trick counter by arguing that if finding such a manipulation is NP-hard, then manipulation by computationally-limited agents should not pose a significant threat. However, more recent work has exploited the fact that NP-hardness is only a worst-case measure of complexity, and has shown that some election systems that are NP-hard to manipulate may in fact be easy to manipulate under some reasonable assumptions. We evaluate, both theoretically and empirically, the complexity, worst-case and otherwise, of manipulating, bribing, and controlling elections. Our focus is particularly on scoring protocols. In doing so, we gain an understanding of how these election systems work by discovering what makes manipulation, bribery, and control easy or hard. This allows us to discover the strengths and weaknesses of scoring protocols, and gain an understanding of what properties of election systems are desirable or undesirable. One approach we have used to do this is relating the problems of interest in election systems to problems of known complexity, as well as to problems with known algorithms and heuristics, particularly Satisfiability and Partition. This approach can help us gain an understanding of computational social choice problems in which little is known about the complexity or potential algorithms. Among other results, we show how certain parameters and properties of scoring protocols can make elections easy or hard to manipulate. We find that the empirical complexity of manipulation in some cases have unusual behaviors for its complexity class. For example, it is found that in the case of manipulating the Borda election of unweighted voters with an unbounded candidate cardinality, the encoding of this problem to Satisfiability performs especially well near the boundary cases of this problem and for unsatisfiable instances, both results contrary to the normal behavior of NP-complete problems. Although attempts have been made to design fair election systems with certain properties, another dilemma that this has given rise to is the existence of election systems in which it is hard to elect the winners, at least in the worst case. Two notable election systems in which determining the winners are hard are Dodgson and Young. We evaluate the problem of finding the winners empirically, to extend these complexity results away from the worst case, and determine whether the worst-case complexity of these hard winner problems is truly a computational barrier. We find that, like most NP-complete problems such as Satisfiability, many instances of interest in finding winners of hard election systems are still relatively simple. We confirm that indeed, like Satisfiability, the hard worst-case results occur only in rare circumstances. We also find an interesting complexity disparity between the related problems of finding the Dodgson or Young score of a candidate, and that of finding the set of Dodgson or Young winners. Surprisingly, it appears empirically easier for one to find the set of all winners in a Dodgson or Young election than to score a single candidate in either election

    Detecting Possible Manipulators in Elections

    Full text link
    Manipulation is a problem of fundamental importance in the context of voting in which the voters exercise their votes strategically instead of voting honestly to prevent selection of an alternative that is less preferred. The Gibbard-Satterthwaite theorem shows that there is no strategy-proof voting rule that simultaneously satisfies certain combinations of desirable properties. Researchers have attempted to get around the impossibility results in several ways such as domain restriction and computational hardness of manipulation. However these approaches have been shown to have limitations. Since prevention of manipulation seems to be elusive, an interesting research direction therefore is detection of manipulation. Motivated by this, we initiate the study of detection of possible manipulators in an election. We formulate two pertinent computational problems - Coalitional Possible Manipulators (CPM) and Coalitional Possible Manipulators given Winner (CPMW), where a suspect group of voters is provided as input to compute whether they can be a potential coalition of possible manipulators. In the absence of any suspect group, we formulate two more computational problems namely Coalitional Possible Manipulators Search (CPMS), and Coalitional Possible Manipulators Search given Winner (CPMSW). We provide polynomial time algorithms for these problems, for several popular voting rules. For a few other voting rules, we show that these problems are in NP-complete. We observe that detecting manipulation maybe easy even when manipulation is hard, as seen for example, in the case of the Borda voting rule.Comment: Accepted in AAMAS 201

    Complexity of control of Borda count elections

    Get PDF
    In this thesis, we discuss some existing and new results relating to computational aspects of voting. In particular, we consider, apparently for the first time, the computational complexity of the application of certain types of control to the Borda count voting system. We use control in the formal sense of attempts by an election\u27s administrator to make a specific candidate win or lose by various means. We consider control problems for weighted elections, as well as for unweighted elections with voter preferences input both individually and in succinct representation
    corecore