4,045 research outputs found

    A Novel Approach to Finding Near-Cliques: The Triangle-Densest Subgraph Problem

    Full text link
    Many graph mining applications rely on detecting subgraphs which are near-cliques. There exists a dichotomy between the results in the existing work related to this problem: on the one hand the densest subgraph problem (DSP) which maximizes the average degree over all subgraphs is solvable in polynomial time but for many networks fails to find subgraphs which are near-cliques. On the other hand, formulations that are geared towards finding near-cliques are NP-hard and frequently inapproximable due to connections with the Maximum Clique problem. In this work, we propose a formulation which combines the best of both worlds: it is solvable in polynomial time and finds near-cliques when the DSP fails. Surprisingly, our formulation is a simple variation of the DSP. Specifically, we define the triangle densest subgraph problem (TDSP): given G(V,E)G(V,E), find a subset of vertices SS^* such that τ(S)=maxSVt(S)S\tau(S^*)=\max_{S \subseteq V} \frac{t(S)}{|S|}, where t(S)t(S) is the number of triangles induced by the set SS. We provide various exact and approximation algorithms which the solve the TDSP efficiently. Furthermore, we show how our algorithms adapt to the more general problem of maximizing the kk-clique average density. Finally, we provide empirical evidence that the TDSP should be used whenever the output of the DSP fails to output a near-clique.Comment: 42 page

    Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach

    Full text link
    In this paper, we study the kk-forest problem in the model of resource augmentation. In the kk-forest problem, given an edge-weighted graph G(V,E)G(V,E), a parameter kk, and a set of mm demand pairs V×V\subseteq V \times V, the objective is to construct a minimum-cost subgraph that connects at least kk demands. The problem is hard to approximate---the best-known approximation ratio is O(min{n,k})O(\min\{\sqrt{n}, \sqrt{k}\}). Furthermore, kk-forest is as hard to approximate as the notoriously-hard densest kk-subgraph problem. While the kk-forest problem is hard to approximate in the worst-case, we show that with the use of resource augmentation, we can efficiently approximate it up to a constant factor. First, we restate the problem in terms of the number of demands that are {\em not} connected. In particular, the objective of the kk-forest problem can be viewed as to remove at most mkm-k demands and find a minimum-cost subgraph that connects the remaining demands. We use this perspective of the problem to explain the performance of our algorithm (in terms of the augmentation) in a more intuitive way. Specifically, we present a polynomial-time algorithm for the kk-forest problem that, for every ϵ>0\epsilon>0, removes at most mkm-k demands and has cost no more than O(1/ϵ2)O(1/\epsilon^{2}) times the cost of an optimal algorithm that removes at most (1ϵ)(mk)(1-\epsilon)(m-k) demands

    Robust Densest Subgraph Discovery

    Full text link
    Dense subgraph discovery is an important primitive in graph mining, which has a wide variety of applications in diverse domains. In the densest subgraph problem, given an undirected graph G=(V,E)G=(V,E) with an edge-weight vector w=(we)eEw=(w_e)_{e\in E}, we aim to find SVS\subseteq V that maximizes the density, i.e., w(S)/Sw(S)/|S|, where w(S)w(S) is the sum of the weights of the edges in the subgraph induced by SS. Although the densest subgraph problem is one of the most well-studied optimization problems for dense subgraph discovery, there is an implicit strong assumption; it is assumed that the weights of all the edges are known exactly as input. In real-world applications, there are often cases where we have only uncertain information of the edge weights. In this study, we provide a framework for dense subgraph discovery under the uncertainty of edge weights. Specifically, we address such an uncertainty issue using the theory of robust optimization. First, we formulate our fundamental problem, the robust densest subgraph problem, and present a simple algorithm. We then formulate the robust densest subgraph problem with sampling oracle that models dense subgraph discovery using an edge-weight sampling oracle, and present an algorithm with a strong theoretical performance guarantee. Computational experiments using both synthetic graphs and popular real-world graphs demonstrate the effectiveness of our proposed algorithms.Comment: 10 pages; Accepted to ICDM 201

    Where Graph Topology Matters: The Robust Subgraph Problem

    Full text link
    Robustness is a critical measure of the resilience of large networked systems, such as transportation and communication networks. Most prior works focus on the global robustness of a given graph at large, e.g., by measuring its overall vulnerability to external attacks or random failures. In this paper, we turn attention to local robustness and pose a novel problem in the lines of subgraph mining: given a large graph, how can we find its most robust local subgraph (RLS)? We define a robust subgraph as a subset of nodes with high communicability among them, and formulate the RLS-PROBLEM of finding a subgraph of given size with maximum robustness in the host graph. Our formulation is related to the recently proposed general framework for the densest subgraph problem, however differs from it substantially in that besides the number of edges in the subgraph, robustness also concerns with the placement of edges, i.e., the subgraph topology. We show that the RLS-PROBLEM is NP-hard and propose two heuristic algorithms based on top-down and bottom-up search strategies. Further, we present modifications of our algorithms to handle three practical variants of the RLS-PROBLEM. Experiments on synthetic and real-world graphs demonstrate that we find subgraphs with larger robustness than the densest subgraphs even at lower densities, suggesting that the existing approaches are not suitable for the new problem setting.Comment: 13 pages, 10 Figures, 3 Tables, to appear at SDM 2015 (9 pages only

    From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More

    Full text link
    We consider questions that arise from the intersection between the areas of polynomial-time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable algorithms. The questions, which have been asked several times (e.g., [Marx08, FGMS12, DF13]), are whether there is a non-trivial FPT-approximation algorithm for the Maximum Clique (Clique) and Minimum Dominating Set (DomSet) problems parameterized by the size of the optimal solution. In particular, letting OPT\text{OPT} be the optimum and NN be the size of the input, is there an algorithm that runs in t(OPT)poly(N)t(\text{OPT})\text{poly}(N) time and outputs a solution of size f(OPT)f(\text{OPT}), for any functions tt and ff that are independent of NN (for Clique, we want f(OPT)=ω(1)f(\text{OPT})=\omega(1))? In this paper, we show that both Clique and DomSet admit no non-trivial FPT-approximation algorithm, i.e., there is no o(OPT)o(\text{OPT})-FPT-approximation algorithm for Clique and no f(OPT)f(\text{OPT})-FPT-approximation algorithm for DomSet, for any function ff (e.g., this holds even if ff is the Ackermann function). In fact, our results imply something even stronger: The best way to solve Clique and DomSet, even approximately, is to essentially enumerate all possibilities. Our results hold under the Gap Exponential Time Hypothesis (Gap-ETH) [Dinur16, MR16], which states that no 2o(n)2^{o(n)}-time algorithm can distinguish between a satisfiable 3SAT formula and one which is not even (1ϵ)(1 - \epsilon)-satisfiable for some constant ϵ>0\epsilon > 0. Besides Clique and DomSet, we also rule out non-trivial FPT-approximation for Maximum Balanced Biclique, Maximum Subgraphs with Hereditary Properties, and Maximum Induced Matching in bipartite graphs. Additionally, we rule out ko(1)k^{o(1)}-FPT-approximation algorithm for Densest kk-Subgraph although this ratio does not yet match the trivial O(k)O(k)-approximation algorithm.Comment: 43 pages. To appear in FOCS'1

    Distance-generalized Core Decomposition

    Full text link
    The kk-core of a graph is defined as the maximal subgraph in which every vertex is connected to at least kk other vertices within that subgraph. In this work we introduce a distance-based generalization of the notion of kk-core, which we refer to as the (k,h)(k,h)-core, i.e., the maximal subgraph in which every vertex has at least kk other vertices at distance h\leq h within that subgraph. We study the properties of the (k,h)(k,h)-core showing that it preserves many of the nice features of the classic core decomposition (e.g., its connection with the notion of distance-generalized chromatic number) and it preserves its usefulness to speed-up or approximate distance-generalized notions of dense structures, such as hh-club. Computing the distance-generalized core decomposition over large networks is intrinsically complex. However, by exploiting clever upper and lower bounds we can partition the computation in a set of totally independent subcomputations, opening the door to top-down exploration and to multithreading, and thus achieving an efficient algorithm

    Truthful Mechanisms for Matching and Clustering in an Ordinal World

    Full text link
    We study truthful mechanisms for matching and related problems in a partial information setting, where the agents' true utilities are hidden, and the algorithm only has access to ordinal preference information. Our model is motivated by the fact that in many settings, agents cannot express the numerical values of their utility for different outcomes, but are still able to rank the outcomes in their order of preference. Specifically, we study problems where the ground truth exists in the form of a weighted graph of agent utilities, but the algorithm can only elicit the agents' private information in the form of a preference ordering for each agent induced by the underlying weights. Against this backdrop, we design truthful algorithms to approximate the true optimum solution with respect to the hidden weights. Our techniques yield universally truthful algorithms for a number of graph problems: a 1.76-approximation algorithm for Max-Weight Matching, 2-approximation algorithm for Max k-matching, a 6-approximation algorithm for Densest k-subgraph, and a 2-approximation algorithm for Max Traveling Salesman as long as the hidden weights constitute a metric. We also provide improved approximation algorithms for such problems when the agents are not able to lie about their preferences. Our results are the first non-trivial truthful approximation algorithms for these problems, and indicate that in many situations, we can design robust algorithms even when the agents may lie and only provide ordinal information instead of precise utilities.Comment: To appear in the Proceedings of WINE 201
    corecore