1,128 research outputs found

    Systems and algorithms for autonomously simultaneous observation of multiple objects using robotic PTZ cameras assisted by a wide-angle camera

    Full text link
    Abstract ā€” We report an autonomous observation system with multiple pan-tilt-zoom (PTZ) cameras assisted by a fixed wide-angle camera. The wide-angle camera provides large but low resolution coverage and detects and tracks all moving objects in the scene. Based on the output of the wide-angle camera, the system generates spatiotemporal observation requests for each moving object, which are candidates for close-up views using PTZ cameras. Due to the fact that there are usually much more objects than the number of PTZ cameras, the system first assigns a subset of the requests/objects to each PTZ camera. The PTZ cameras then select the parameter settings that best satisfy the assigned competing requests to provide high resolution views of the moving objects. We solve the request assignment and the camera parameter selection problems in real time. The effectiveness of the proposed system is validated in comparison with an existing work using simulation. The simulation results show that in heavy traffic scenarios, our algorithm increases the number of observed objects by over 200%. I

    Systems and Algorithms for Automated Collaborative Observation using Networked Robotic Cameras

    Get PDF
    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. Recently, the fast evolving advances in network and computer technologies and decreasing size and cost of sensors and robots enable us to further extend the MOMR system architecture to incorporate heterogeneous components such as humans, robots, sensors, and automated agents. The requests for controlling robot actuation are generated by all the participants. We term it as the MOMR++ system. However, to reach the best potential and performance of the system, there are many technical challenges needing to be addressed. In this dissertation, we address two major challenges in the MOMR++ system development. We first address the robot coordination and planning issue in the application of an autonomous crowd surveillance system. The system consists of multiple robotic pan-tilt-zoom (PTZ) cameras assisted with a fixed wide-angle camera. The wide-angle camera provides an overview of the scene and detects moving objects, which are required for close-up views using the PTZ cameras. When applied to the pedestrian surveillance application and compared to a previous work, the system achieves increasing number of observed objects by over 210% in heavy traffic scenarios. The key issue here is given the limited number (e.g., p (p > 0)) of PTZ cameras and many more (e.g., n (n >> p)) observation requests, how to coordinate the cameras to best satisfy all the requests. We formulate this problem as a new camera resource allocation problem. Given p cameras, n observation requests, and [epsilon] being approximation bound, we develop an approximation algorithm running in O(n/[epsilon]Ā³ + pĀ²/[epsilon]ā¶) time, and an exact algorithm, when p = 2, running in O(nĀ³) time. We then address the automatic object content analysis and recognition issue in the application of an autonomous rare bird species detection system. We set up the system in the forest near Brinkley, Arkansas. The camera monitors the sky, detects motions, and preserves video data for only those targeted bird species. During the one-year search, the system reduces the raw video data of 29.41TB to only 146.7MB (reduction rate 99.9995%). The key issue here is to automatically recognize the flying bird species. We verify the bird body axis dynamic information by an extended Kalman filter (EKF) and compare the bird dynamic state with the prior knowledge of the targeted bird species. We quantify the uncertainty in recognition due to the measurement uncertainty and develop a novel Probable Observation Data Set (PODS)-based EKF method. In experiments with real video data, the algorithm achieves 95% area under the receiver operating characteristic (ROC) curve. Through the exploration of the two MOMR++ systems, we conclude that the new MOMR++ system architecture enables much wider range of participants, enhances the collaboration and interaction between participants so that information can be exchanged in between, suppresses the chance of any individual bias or mistakes in the observation process, and further frees humans from the control/observation process by providing automatic control/observation. The new MOMR++ system architecture is a promising direction for future telerobtics advances

    Algorithms, Protocols & Systems for Remote Observation Using Networked Robotic Cameras

    Get PDF
    Emerging advances in robotic cameras, long-range wireless networking, and distributed sensors make feasible a new class of hybrid teleoperated/autonomous robotic remote "observatories" that can allow groups of peoples, via the Internet, to observe, record, and index detailed activity occurred in remote site. Equipped with robotic pan-tilt actuation mechanisms and a high-zoom lens, the camera can cover a large region with very high spatial resolution and allows for observation at a distance. High resolution motion panorama is the most nature data representation. We develop algorithms and protocols for high resolution motion panorama. We discover and prove the projection invariance and achieve real time image alignment. We propose a minimum variance based incremental frame alignment algorithm to minimize the accumulation of alignment error in incremental image alignment and ensure the quality of the panorama video over the long run. We propose a Frame Graph based panorama documentation algorithm to manage the large scale data involved in the online panorama video documentation. We propose a on-demand high resolution panorama video-streaming system that allows on-demand sharing of a high-resolution motion panorama and efficiently deals with multiple concurrent spatial-temporal user requests. In conclusion, our research work on high resolution motion panorama have significantly improve the efficiency and accuracy of image alignment, panorama video quality, data organization, and data storage and retrieving in remote observation using networked robotic cameras

    An Exact Algorithm for Optimal Areal Positioning Problem with Rectangular Targets and Requests

    Get PDF
    In this thesis, we introduce a new class of problems, which we call Optimal Areal Positioning (OAP), and study a special form of these problems. OAPs have important applications in earth observation satellite management, tele-robotics, multi-camera control, and surveillance. In OAP, we would like to find the optimal position of a set of floating geometric objects (targets) on a two-dimensional plane to (partially) cover another set of fixed geometric objects (requests) in order to maximize the total reward obtained from covered parts of requests. In this thesis, we consider the special form of OAP in which targets and requests are parallel axes rectangles and targets are of equal size. A predetermined reward is associated with covering an area unit of each request. Based on the number of target rectangles, we classify rectangular OAP into two categories: Single Target Problem (STP) and Multi-Target Problem (MTP). The structure of MTP can be compared to the planar p-center which is NP-complete, if p is part of the input. In fact, we conjecture that MTP is NP-complete. The existing literature does not contain any work on MTP. The research contributions of this thesis are as follows: We develop new theoretical properties for the solution of STP and devised a new solution approach for it. This approach is based on a novel branch-and-bound (BB) algorithm devised over a reduced solution space. Branching is done using a clustering scheme. Our computational results show that in many cases our approach significantly outperforms the existing Plateau Vertex Traversal and brute force algorithms, especially for problems with many requests appearing in clusters over a large region. We perform a theoretical study of MTP for the first time and prove several theoretical properties for its solution. We have introduced a reduced solution space using these properties. We present the first exact algorithm to solve MTP. This algorithm has a branch-and-bound framework. The reduced solution space calls for a novel branching strategy for MTP. The algorithm has a main branch-and-bound tree with a special structure along with two trees (one for each axis) to store the information required for branching in the main tree in an efficient format. Branching is done using a clustering scheme. We perform computational experiments to evaluate the performance of our algorithm. Our algorithm solves relatively large instances of MTP in a short time

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    Coordinated Sensor-Based Area Coverage and Cooperative Localization of a Heterogeneous Fleet of Autonomous Surface Vessels (ASVs)

    Get PDF
    Sensor coverage with fleets of robots is a complex task requiring solutions to localization, communication, navigation and basic sensor coverage. Sensor coverage of large areas is a problem that occurs in a variety of different environments from terrestrial to aerial to aquatic. In this thesis we consider the aquatic version of the problem. Given a known aquatic environment and collection of aquatic surface vehicles with known kinematic and dynamic constraints, how can a fleet of vehicles be deployed to provide sensor coverage of the surface of the body of water? Rather than considering this problem in general, in this work we consider the problem given a specific fleet consisting of one very well equipped robot aided by a number of smaller, less well equipped devices that must operate in close proximity to the main robot. A boustrophedon decomposition algorithm is developed that incorporates the motion, sensing and communication constraints imposed by the autonomous fleet. Solving the coverage problem leads to a localization/communication problem. A critical problem for a group of autonomous vehicles is ensuring that the collection operates within a common reference frame. Here we consider the problem of localizing a heterogenous collection of aquatic surface vessels within a global reference frame. We assume that one vessel -- the mother robot -- has access to global position data of high accuracy, while the other vessels -- the child robots -- utilize limited onboard sensors and sophisticated sensors on board the mother robot to localize themselves. This thesis provides details of the design of the elements of the heterogeneous fleet including the sensors and sensing algorithms along with the communication strategy used to localize all elements of the fleet within a global reference frame. Details of the robot platforms to be used in implementing a solution are also described. Simulation of the approach is used to demonstrate the effectiveness of the algorithm, and the algorithm and its components are evaluated using a fleet of ASVs
    • ā€¦
    corecore